This site is intended for healthcare professionals
  • Home
  • /
  • Journals
  • /
  • Polycystic Kidney Disease
  • /
  • Renal plasticity revealed through reversal of poly...

Renal plasticity revealed through reversal of polycystic kidney disease in mice

Read time: 1 mins
Published:1st Dec 2021
Author: Dong K, Zhang C, Tian X, Coman D, Hyder F, Ma M et al.
Source: Nature Genetics
Availability: Pay for access, or by subscription
Ref.:Nat Genet. 2021 Dec;53(12):1649-1663.
Renal plasticity revealed through reversal of polycystic kidney disease in mice

Initiation of cyst formation in autosomal dominant polycystic kidney disease (ADPKD) occurs when kidney tubule cells are rendered null for either PKD1 or PKD2 by somatic 'second hit' mutations. Subsequent cyst progression remodels the organ through changes in tubule cell shape, proliferation and secretion. The kidney develops inflammation and fibrosis. We constructed a mouse model in which adult inactivation of either Pkd gene can be followed by reactivation of the gene at a later time. Using this model, we show that re-expression of Pkd genes in cystic kidneys results in rapid reversal of ADPKD. Cyst cell proliferation is reduced, autophagy is activated and cystic tubules with expanded lumina lined by squamoid cells revert to normal lumina lined by cuboidal cells. Increases in inflammation, extracellular matrix deposition and myofibroblast activation are reversed, and the kidneys become smaller. We conclude that phenotypic features of ADPKD are reversible and that the kidney has an unexpected capacity for plasticity controlled at least in part by ADPKD gene function.

Read abstract on library site    Access full article