Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease where invasive pulmonary myofibroblasts secrete collagen and destroy lung integrity. Here, we show that interleukin-11 (IL11) is up-regulated in the lung of patients with IPF, associated with disease severity, and IL-11 is secreted from IPF fibroblasts.
In vitro, IL-11 stimulates lung fibroblasts to become invasive actin alpha 2, smooth muscle–positive (ACTA2+), collagen-secreting myofibroblasts in an extracellular signal–regulated kinase (ERK)–dependent, posttranscriptional manner. In mice, fibroblast-specific transgenic expression or administration of murine IL-11 induces lung myofibroblasts and causes lung fibrosis. IL-11 receptor subunit alpha-1 (Il11ra1)–deleted mice, whose lung fibroblasts are unresponsive to profibrotic stimulation, are protected from fibrosis in the bleomycin mouse model of pulmonary fibrosis. We generated an IL-11–neutralizing antibody that blocks lung fibroblast activation downstream of multiple stimuli and reverses myofibroblast activation. In therapeutic studies, anti–IL-11 treatment diminished lung inflammation and reversed lung fibrosis while inhibiting ERK and SMAD activation in mice. These data prioritize IL-11 as a drug target for lung fibrosis and IPF.