This site is intended for healthcare professionals
FDA Hero  Banner - Multi-coloured pills and tablets
FDA Drug information

Silodosin

Read time: 1 mins
Marketing start date: 02 May 2024

Summary of product characteristics


Adverse Reactions

6 ADVERSE REACTIONS Most common adverse reactions (incidence ≥2%) are retrograde ejaculation, dizziness, diarrhea, orthostatic hypotension, headache, nasopharyngitis, and nasal congestion. (6) To report SUSPECTED ADVERSE REACTIONS, contact FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. 6.1 Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. In U.S. clinical trials, 897 patients with BPH were exposed to 8 mg silodosin capsules daily. This includes 486 patients exposed for 6 months and 168 patients exposed for 1 year. The population was 44 to 87 years of age, and predominantly Caucasian. Of these patients, 42.8% were 65 years of age or older and 10.7% were 75 years of age or older. In double-blind, placebo controlled, 12-week clinical trials, 466 patients were administered silodosin capsules and 457 patients were administered placebo. At least one treatment-emergent adverse reaction was reported by 55.2% of silodosin capsules treated patients (36.8% for placebo treated). The majority (72.1%) of adverse reactions for the silodosin capsules treated patients (59.8% for placebo treated) were qualified by the investigator as mild. A total of 6.4% of silodosin capsules treated patients (2.2% for placebo treated) discontinued therapy due to an adverse reaction (treatment-emergent), the most common reaction being retrograde ejaculation (2.8%) for silodosin capsules treated patients. Retrograde ejaculation is reversible upon discontinuation of treatment. Adverse Reactions observed in at least 2% of patients: The incidence of treatment-emergent adverse reactions listed in the following table were derived from two 12-week, multicenter, double-blind, placebo-controlled clinical studies of silodosin capsules 8 mg daily in BPH patients. Adverse reactions that occurred in at least 2% of patients treated with silodosin capsules and more frequently than with placebo are shown in Table 1. Table 1: Adverse Reactions Occurring in ≥2% of Patients in 12-week, Placebo-Controlled Clinical Trials Adverse Reactions Silodosin Capsules N = 466 n (%) Placebo N = 457 n (%) Retrograde Ejaculation 131 (28.1) 4 (0.9) Dizziness 15 (3.2) 5 (1.1) Diarrhea 12 (2.6) 6 (1.3) Orthostatic Hypotension 12 (2.6) 7 (1.5) Headache 11 (2.4) 4 (0.9) Nasopharyngitis 11 (2.4) 10 (2.2) Nasal Congestion 10 (2.1) 1 (0.2) In the two 12-week, placebo-controlled clinical trials, the following adverse events were reported by between 1% and 2% of patients receiving silodosin capsules and occurred more frequently than with placebo: insomnia, PSA increased, sinusitis, abdominal pain, asthenia, and rhinorrhea. One case of syncope in a patient taking prazosin concomitantly and one case of priapism were reported in the silodosin capsules treatment group. In a 9-month open-label safety study of silodosin capsules, one case of Intraoperative Floppy Iris Syndrome (IFIS) was reported. 6.2 Postmarketing Experience The following adverse reactions have been identified during post approval use of silodosin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure: Skin and subcutaneous tissue disorders: toxic skin eruption, purpura, skin rash, pruritus and urticaria Hepatobiliary disorders: jaundice, impaired hepatic function associated with increased transaminase values Immune system disorders: allergic-type reactions, not limited to skin reactions including swollen tongue and pharyngeal edema resulting in serious outcomes.

Contraindications

4 CONTRAINDICATIONS Severe renal impairment (CCr <30 mL/min) Severe hepatic impairment (Child-Pugh score ≥10) Concomitant administration with strong Cytochrome P450 3A4 (CYP3A4) inhibitors (e.g., ketoconazole, clarithromycin, itraconazole, ritonavir) [ see Drug Interactions (7.1) ] Patients with a history of hypersensitivity to silodosin or any of the ingredients of silodosin capsules [ see Adverse Reactions (6.2) and Description (11) ] Patients with severe renal impairment [Creatinine Clearance (CCr <30 mL/min)]. (4) Patients with severe hepatic impairment (Child-Pugh score ≥ 10). (4) Concomitant administration with strong Cytochrome P450 3A4 (CYP3A4) inhibitors (e.g., ketoconazole, clarithromycin, itraconazole, ritonavir). (4) Patients with a history of hypersensitivity to silodosin or any of the ingredients of silodosin capsules. (4)

Description

11 DESCRIPTION Silodosin is a selective antagonist of alpha-1 adrenoreceptors. The chemical name of silodosin is 1-(3-Hydroxypropyl)-5-[(2 R )-2-({2-[2-(2,2,2-trifluoroethoxy)phenoxy]ethyl}amino)propyl]-2,3-dihydro-1 H -indole-7-carboxamide and the molecular formula is C 25 H 32 F 3 N 3 O 4 with a molecular weight of 495.53. The structural formula of silodosin is: Silodosin is a white to pale yellow powder that melts at approximately 105 to 109°C. It is freely soluble in acetic acid, freely soluble in alcohol and very slightly to practically soluble in water. Each silodosin capsules 4 mg capsule for oral administration contains 4 mg silodosin, and the following inactive ingredients: pregelatinized starch, sucrose, sodium lauryl sulfate and magnesium stearate. The size #3 hard gelatin capsules contain gelatin and titanium dioxide. The capsules are printed with edible gold ink containing shellac, propylene glycol and iron oxide yellow. Each silodosin capsules 8 mg capsule for oral administration contains 8 mg silodosin, and the following inactive ingredients: pregelatinized starch, sucrose, sodium lauryl sulfate and magnesium stearate. The size #1 hard gelatin capsules contain gelatin and titanium dioxide. The capsules are printed with edible green ink containing shellac, propylene glycol, iron oxide yellow FD&C Blue No. 1 Aluminum Lake. Structure

Dosage And Administration

2 DOSAGE AND ADMINISTRATION 8 mg capsules taken orally once daily with a meal. (2.1) 4 mg capsules taken orally once daily with a meal for those with moderate renal impairment [Creatinine Clearance (CCr) 30 to 50 mL/min]. (2.2) 2.1 Dosing Information The recommended dose is 8 mg orally once daily with a meal. Patients who have difficulty swallowing pills and capsules may carefully open the silodosin capsule and sprinkle the powder inside on a tablespoonful of applesauce. The applesauce should be swallowed immediately (within 5 minutes) without chewing and followed with an 8 oz glass of cool water to ensure complete swallowing of the powder. The applesauce used should not be hot, and it should be soft enough to be swallowed without chewing. Any powder/applesauce mixture should be used immediately (within 5 minutes) and not stored for future use. Subdividing the contents of a silodosin capsule is not recommended [ see Clinical Pharmacology (12.3 )]. 2.2 Dosage Adjustment in Special Populations Renal impairment: Silodosin capsule is contraindicated in patients with severe renal impairment (CCr <30 mL/min). In patients with moderate renal impairment (CCr 30 to 50 mL/min), the dose should be reduced to 4 mg once daily taken with a meal. No dosage adjustment is needed in patients with mild renal impairment (CCr 50 to 80 mL/min) [ see Contraindications (4), Warnings and Precautions (5.2), Use in Specific Populations (8.6), and Clinical Pharmacology (12.3 )]. Hepatic impairment: Silodosin capsule has not been studied in patients with severe hepatic impairment (Child-Pugh score ≥10) and is therefore contraindicated in these patients. No dosage adjustment is needed in patients with mild or moderate hepatic impairment [ see Contraindications (4), Warnings and Precautions (5.3), Use in Specific Populations (8.7), and Clinical Pharmacology (12.3 )].

Indications And Usage

1 INDICATIONS AND USAGE Silodosin capsule, a selective alpha-1 adrenergic receptor antagonist, is indicated for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH) [ see Clinical Studies (14 )]. Silodosin capsule is not indicated for the treatment of hypertension. Silodosin capsule, an alpha-1 adrenergic receptor antagonist, is indicated for the treatment of the signs and symptoms of benign prostatic hyperplasia (BPH). (1) Silodosin capsule is not indicated for the treatment of hypertension.

Overdosage

10 OVERDOSAGE Silodosin capsule was evaluated at doses of up to 48 mg/day in healthy male subjects. The dose-limiting adverse event was postural hypotension. Should overdose of silodosin capsules lead to hypotension, support of the cardiovascular system is of first importance. Restoration of blood pressure and normalization of heart rate may be accomplished by maintaining the patient in the supine position. If this measure is inadequate, administration of intravenous fluid should be considered. If necessary, vasopressors could be used, and renal function should be monitored and supported as needed. Dialysis is unlikely to be of significant benefit since silodosin is highly (97%) protein bound.

Adverse Reactions Table

Adverse Reactions Silodosin Capsules N = 466 n (%) Placebo N = 457 n (%)
Retrograde Ejaculation 131 (28.1) 4 (0.9)
Dizziness 15 (3.2) 5 (1.1)
Diarrhea 12 (2.6) 6 (1.3)
Orthostatic Hypotension 12 (2.6) 7 (1.5)
Headache 11 (2.4) 4 (0.9)
Nasopharyngitis 11 (2.4) 10 (2.2)
Nasal Congestion 10 (2.1) 1 (0.2)

Drug Interactions

7 DRUG INTERACTIONS Strong P-glycoprotein inhibitors (e.g., cyclosporine): Co-administration may increase plasma silodosin concentration. Concomitant use is not recommended. (7.2) Alpha-blockers: Interactions involving concomitant use have not been determined. However, interactions are expected and concomitant use is not recommended. (7.3) Concomitant use of PDE5 inhibitors with alpha-blockers including silodosin can potentially cause symptomatic hypotension. (5.5) (7.5) 7.1 Moderate and Strong CYP3A4 Inhibitors In a clinical metabolic inhibition study, a 3.8-fold increase in silodosin maximum plasma concentrations and 3.2-fold increase in silodosin exposure were observed with concurrent administration of a strong CYP3A4 inhibitor, 400 mg ketoconazole. Use of strong CYP3A4 inhibitors such as itraconazole or ritonavir may cause plasma concentrations of silodosin to increase. Concomitant administration of strong CYP3A4 inhibitors and silodosin capsule is contraindicated [ see Contraindications (4), Warnings and Precautions (5.4) and Clinical Pharmacology (12.3) ]. The effect of moderate CYP3A4 inhibitors on the pharmacokinetics of silodosin has not been evaluated. Concomitant administration with moderate CYP3A4 inhibitors (e.g., diltiazem, erythromycin, verapamil) may increase concentration of silodosin capsules. Exercise caution and monitor patients for adverse events when co-administering silodosin capsules with moderate CYP3A4 inhibitors. 7.2 Strong P-glycoprotein (P-gp) Inhibitors In vitro studies indicated that silodosin is a P-gp substrate. Ketoconazole, a CYP3A4 inhibitor that also inhibits P-gp, caused significant increase in exposure to silodosin. Inhibition of P-gp may lead to increased silodosin concentration. Silodosin capsule is therefore not recommended in patients taking strong P-gp inhibitors such as cyclosporine [ see Clinical Pharmacology (12.3) ]. 7.3 Alpha-Blockers The pharmacodynamic interactions between silodosin and other alpha-blockers have not been determined. However, interactions may be expected, and silodosin capsules should not be used in combination with other alpha-blockers [ see Warnings and Precautions (5.5) ]. 7.4 Digoxin The effect of co-administration of silodosin capsules and digoxin 0.25 mg/day for 7 days was evaluated in a clinical trial in 16 healthy males, aged 18 to 45 years. Concomitant administration of silodosin capsules and digoxin did not significantly alter the steady state pharmacokinetics of digoxin. No dose adjustment is required. 7.5 PDE5 Inhibitors Co-administration of silodosin capsules with a single dose of 100 mg sildenafil or 20 mg tadalafil was evaluated in a placebo-controlled clinical study that included 24 healthy male subjects, 45 to 78 years of age. Orthostatic vital signs were monitored in the 12-hour period following concomitant dosing. During this period, the total number of positive orthostatic test results was greater in the group receiving silodosin capsules plus a PDE5 inhibitor compared with silodosin capsules alone. No events of symptomatic orthostasis or dizziness were reported in subjects receiving silodosin capsules with a PDE5 inhibitor. 7.6 Other Concomitant Drug Therapy Antihypertensives The pharmacodynamic interactions between silodosin and antihypertensives have not been rigorously investigated in a clinical study. However, approximately one-third of the patients in clinical studies used concomitant antihypertensive medications with silodosin capsules. The incidence of dizziness and orthostatic hypotension in these patients was higher than in the general silodosin population (4.6% versus 3.8% and 3.4% versus 3.2%, respectively). Exercise caution during concomitant use with antihypertensives and monitor patients for possible adverse events [ see Warnings and Precautions (5.5) ]. Metabolic Interactions In vitro data indicate that silodosin does not have the potential to inhibit or induce cytochrome P450 enzyme systems. 7.7 Food Interactions The effect of a moderate fat, moderate calorie meal on silodosin pharmacokinetics was variable and decreased silodosin maximum plasma concentration (C max ) by approximately 18 to 43% and exposure (AUC) by 4 to 49% across three different studies. Safety and efficacy clinical trials for silodosin capsules were always conducted in the presence of food intake. Patients should be instructed to take silodosin with a meal to reduce risk of adverse events [ see Clinical Pharmacology (12.3) ].

Clinical Pharmacology

12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Silodosin is a selective antagonist of post-synaptic alpha-1 adrenoreceptors, which are located in the human prostate, bladder base, bladder neck, prostatic capsule, and prostatic urethra. Blockade of these alpha-1 adrenoreceptors can cause smooth muscle in these tissues to relax, resulting in an improvement in urine flow and a reduction in BPH symptoms. An in vitro study examining binding affinity of silodosin to the three subtypes of the alpha-1 adrenoreceptors (alpha-1A, alpha-1B, and alpha-1D) was conducted. The results of the study demonstrated that silodosin binds with high affinity to the alpha-1A subtype. 12.2 Pharmacodynamics Orthostatic Effects A test for postural hypotension was conducted 2 to 6 hours after the first dose in the two 12-week, double-blind, placebo-controlled clinical studies. After the patient had been at rest in a supine position for 5 minutes, the patient was asked to stand. Blood pressure and heart rate were assessed at 1 minute and 3 minutes after standing. A positive result was defined as a >30 mmHg decrease in systolic blood pressure, or a >20 mmHg decrease in diastolic blood pressure, or a >20 bpm increase in heart rate [ see Warnings and Precautions (5.1) ]. Table 2: Summary of Orthostatic Test Results in 12-week, Placebo-Controlled Clinical Trials Time of Measurement Test Result Silodosin Capsules N=466 n (%) Placebo N=457 n (%) 1 Minute After Standing Negative Positive 459 (98.7) 6 (1.3) 454 (99.6) 2 (0.4) 3 Minutes After Standing Negative Positive 456 (98.1) 9 (1.9) 454 (99.6) 2 (0.4) Cardiac Electrophysiology The effect of silodosin capsules on QT interval was evaluated in a double-blind, randomized, active- (moxifloxacin) and placebo-controlled, parallel-group study in 189 healthy male subjects aged 18 to 45 years. Subjects received either silodosin capsules 8 mg, silodosin capsules 24 mg, or placebo once daily for five days, or a single dose of moxifloxacin 400 mg on Day 5 only. The 24 mg dose of silodosin capsules was selected to achieve blood levels of silodosin that may be seen in a “worst-case” scenario exposure (i.e., in the setting of concomitant renal disease or use of strong CYP3A4 inhibitors) [ see Contraindications (4), Warnings and Precautions (5.3) and Clinical Pharmacology (12.3) ]. QT interval was measured during a 24-hour period following dosing on Day 5 (at silodosin steady state). Silodosin capsules was not associated with an increase in individual corrected (QTcI) QT interval at any time during steady state measurement, while moxifloxacin, the active control, was associated with a maximum 9.59 msec increase in QTcI. There has been no signal of Torsade de Pointes in the post-marketing experience with silodosin outside the United States. 12.3 Pharmacokinetics The pharmacokinetics of silodosin have been evaluated in adult male subjects with doses ranging from 0.1 mg to 24 mg per day. The pharmacokinetics of silodosin are linear throughout this dosage range. Absorption The pharmacokinetic characteristics of silodosin 8 mg once daily were determined in a multi-dose, open-label, 7-day pharmacokinetic study completed in 19 healthy, target-aged (≥ 45 years of age) male subjects. Table 3 presents the steady state pharmacokinetics of this study. Table 3: Mean (±SD) Steady State Pharmacokinetic Parameters in Healthy Males Following Silodosin 8 mg Once Daily with Food C max (ng/mL) t max (hours) t 1/2 (hours) AUC ss (ng•hr/mL) 61.6 ± 27.54 2.6 ± 0.9 13.3 ± 8.07 373.4 ± 164.94 C max = maximum concentration, t max = time to reach C max , t 1/2 = elimination half-life, AUC ss = steady state area under the concentration-time curve Figure 1: Mean (±SD) Silodosin Steady State Plasma Concentration-Time Profile in Healthy Target-Aged Subjects Following Silodosin 8 mg Once Daily with Food The absolute bioavailability is approximately 32%. Food Effect The maximum effect of food (i.e., co-administration with a high fat, high calorie meal) on the PK of silodosin was not evaluated. The effect of a moderate fat, moderate calorie meal was variable and decreased silodosin C max by approximately 18 to 43% and AUC by 4 to 49% across three different studies. In a single-center, open-label, single-dose, randomized, two-period crossover study in twenty healthy male subjects age 21 to 43 years under fed conditions, a study was conducted to evaluate the relative bioavailability of the contents of an 8 mg capsule (size #1) of silodosin sprinkled on applesauce compared to the product administered as an intact capsule. Based on AUC 0-24 and C max , silodosin administered by sprinkling the contents of a silodosin capsules capsule onto a tablespoonful of applesauce was found to be bioequivalent to administering the capsule whole. Distribution Silodosin has an apparent volume of distribution of 49.5 L and is approximately 97% protein bound. Metabolism Silodosin undergoes extensive metabolism through glucuronidation, alcohol and aldehyde dehydrogenase, and cytochrome P450 3A4 (CYP3A4) pathways. The main metabolite of silodosin is a glucuronide conjugate (KMD-3213G) that is formed via direct conjugation of silodosin by UDP-glucuronosyltransferase 2B7 (UGT2B7). Co-administration with inhibitors of UGT2B7 (e.g., probenecid, valproic acid, fluconazole) may potentially increase exposure to silodosin. KMD-3213G, which has been shown in vitro to be active, has an extended half-life (approximately 24 hours) and reaches plasma exposure (AUC) approximately four times greater than that of silodosin. The second major metabolite (KMD-3293) is formed via alcohol and aldehyde dehydrogenases and reaches plasma exposures similar to that of silodosin. KMD-3293 is not expected to contribute significantly to the overall pharmacologic activity of silodosin capsules. Excretion Following oral administration of 14 C-labeled silodosin, the recovery of radioactivity after 10 days was approximately 33.5% in urine and 54.9% in feces. After intravenous administration, the plasma clearance of silodosin was approximately 10 L/hour. Special Populations Race No clinical studies specifically investigating the effects of race have been performed. Geriatric In a study comparing 12 geriatric males (mean age 69 years) and 9 young males (mean age 24 years), the exposure (AUC) and elimination half-life of silodosin were approximately 15% and 20%, respectively, greater in geriatric than young subjects. No difference in the C max of silodosin was observed [ see Use in Specific Populations (8.5) ]. Pediatric Silodosin capsule has not been evaluated in patients less than 18 years of age. Renal Impairment In a study with six subjects with moderate renal impairment, the total silodosin (bound and unbound) AUC, C max , and elimination half-life were 3.2-, 3.1-, and 2-fold higher, respectively, compared to seven subjects with normal renal function. The unbound silodosin AUC and C max were 2- and 1.5-fold higher, respectively, in subjects with moderate renal impairment compared to the normal controls. In controlled and uncontrolled clinical studies, the incidence of orthostatic hypotension and dizziness was greater in subjects with moderate renal impairment treated with 8 mg silodosin capsules daily than in subjects with normal or mildly impaired renal function [ see Contraindications (4), Warnings and Precautions (5.2) and Use in Specific Populations (8.6) ]. Hepatic Impairment In a study comparing nine male patients with moderate hepatic impairment (Child-Pugh scores 7 to 9), to nine healthy male subjects, the single dose pharmacokinetic disposition of silodosin was not significantly altered in the patients with moderate hepatic impairment. No dosing adjustment is required in patients with mild or moderate hepatic impairment. The pharmacokinetics of silodosin in patients with severe hepatic impairment have not been studied [ see Contraindications (4), Warnings and Precautions (5.3) and Use in Specific Populations (8.7) ]. Drug Interactions Cytochrome P450 (CYP) 3A4 Inhibitors Two clinical drug interaction studies were conducted in which a single oral dose of silodosin was co-administered with the strong CYP3A4 inhibitor, ketoconazole, at doses of 400 mg and 200 mg, respectively, once daily for 4 days. Co-administration of 8 mg silodosin with 400 mg ketoconazole led to 3.8-fold increase in silodosin C max and 3.2-fold increase in AUC. Co-administration of 4 mg silodosin with 200 mg ketoconazole led to similar increases: 3.7- and 2.9-fold in silodosin C max and AUC, respectively. Silodosin is contraindicated with strong CYP3A4 inhibitors. The effect of moderate CYP3A4 inhibitors on the pharmacokinetics of silodosin has not been evaluated. Due to the potential for increased exposure to silodosin, caution should be exercised when co-administering silodosin with moderate CYP3A4 inhibitors, particularly those that also inhibit P-glycoprotein (e.g., verapamil, erythromycin). P-glycoprotein (P-gp) Inhibitors In vitro studies indicated that silodosin is a P-gp substrate. A drug interaction study with a strong P-gp inhibitor has not been conducted. However, in drug interaction studies with ketoconazole, a CYP3A4 inhibitor that also inhibits P-gp, significant increase in exposure to silodosin was observed (see Clinical Pharmacology, Drug Interactions, CYP3A4 Inhibitors ). Inhibition of P-gp may lead to increased silodosin concentration. Silodosin is not recommended in patients taking strong P-gp inhibitors (e.g., cyclosporine). Digoxin The effect of silodosin on the pharmacokinetics of digoxin was evaluated in a multiple dose, single-sequence, crossover study of 16 healthy males, aged 18 to 45 years. A loading dose of digoxin was administered as 0.5 mg twice daily for one day. Following the loading doses, digoxin (0.25 mg once daily) was administered alone for seven days and then concomitantly with silodosin 4 mg twice a day for the next seven days. No significant differences in digoxin AUC and C max were observed when digoxin was administered alone or concomitantly with silodosin. Other Metabolic Enzymes and Transporters In vitro studies indicated that silodosin administration is not likely to inhibit the activity of CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 or induce the activity of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A4, and P-gp. Figure 1

Clinical Pharmacology Table

Time of Measurement Test Result Silodosin Capsules N=466 n (%) Placebo N=457 n (%)
1 Minute After Standing Negative Positive 459 (98.7) 6 (1.3) 454 (99.6) 2 (0.4)
3 Minutes After Standing Negative Positive 456 (98.1) 9 (1.9) 454 (99.6) 2 (0.4)

Mechanism Of Action

12.1 Mechanism of Action Silodosin is a selective antagonist of post-synaptic alpha-1 adrenoreceptors, which are located in the human prostate, bladder base, bladder neck, prostatic capsule, and prostatic urethra. Blockade of these alpha-1 adrenoreceptors can cause smooth muscle in these tissues to relax, resulting in an improvement in urine flow and a reduction in BPH symptoms. An in vitro study examining binding affinity of silodosin to the three subtypes of the alpha-1 adrenoreceptors (alpha-1A, alpha-1B, and alpha-1D) was conducted. The results of the study demonstrated that silodosin binds with high affinity to the alpha-1A subtype.

Pharmacodynamics

12.2 Pharmacodynamics Orthostatic Effects A test for postural hypotension was conducted 2 to 6 hours after the first dose in the two 12-week, double-blind, placebo-controlled clinical studies. After the patient had been at rest in a supine position for 5 minutes, the patient was asked to stand. Blood pressure and heart rate were assessed at 1 minute and 3 minutes after standing. A positive result was defined as a >30 mmHg decrease in systolic blood pressure, or a >20 mmHg decrease in diastolic blood pressure, or a >20 bpm increase in heart rate [ see Warnings and Precautions (5.1) ]. Table 2: Summary of Orthostatic Test Results in 12-week, Placebo-Controlled Clinical Trials Time of Measurement Test Result Silodosin Capsules N=466 n (%) Placebo N=457 n (%) 1 Minute After Standing Negative Positive 459 (98.7) 6 (1.3) 454 (99.6) 2 (0.4) 3 Minutes After Standing Negative Positive 456 (98.1) 9 (1.9) 454 (99.6) 2 (0.4) Cardiac Electrophysiology The effect of silodosin capsules on QT interval was evaluated in a double-blind, randomized, active- (moxifloxacin) and placebo-controlled, parallel-group study in 189 healthy male subjects aged 18 to 45 years. Subjects received either silodosin capsules 8 mg, silodosin capsules 24 mg, or placebo once daily for five days, or a single dose of moxifloxacin 400 mg on Day 5 only. The 24 mg dose of silodosin capsules was selected to achieve blood levels of silodosin that may be seen in a “worst-case” scenario exposure (i.e., in the setting of concomitant renal disease or use of strong CYP3A4 inhibitors) [ see Contraindications (4), Warnings and Precautions (5.3) and Clinical Pharmacology (12.3) ]. QT interval was measured during a 24-hour period following dosing on Day 5 (at silodosin steady state). Silodosin capsules was not associated with an increase in individual corrected (QTcI) QT interval at any time during steady state measurement, while moxifloxacin, the active control, was associated with a maximum 9.59 msec increase in QTcI. There has been no signal of Torsade de Pointes in the post-marketing experience with silodosin outside the United States.

Pharmacodynamics Table

Time of Measurement Test Result Silodosin Capsules N=466 n (%) Placebo N=457 n (%)
1 Minute After Standing Negative Positive 459 (98.7) 6 (1.3) 454 (99.6) 2 (0.4)
3 Minutes After Standing Negative Positive 456 (98.1) 9 (1.9) 454 (99.6) 2 (0.4)

Pharmacokinetics

12.3 Pharmacokinetics The pharmacokinetics of silodosin have been evaluated in adult male subjects with doses ranging from 0.1 mg to 24 mg per day. The pharmacokinetics of silodosin are linear throughout this dosage range. Absorption The pharmacokinetic characteristics of silodosin 8 mg once daily were determined in a multi-dose, open-label, 7-day pharmacokinetic study completed in 19 healthy, target-aged (≥ 45 years of age) male subjects. Table 3 presents the steady state pharmacokinetics of this study. Table 3: Mean (±SD) Steady State Pharmacokinetic Parameters in Healthy Males Following Silodosin 8 mg Once Daily with Food C max (ng/mL) t max (hours) t 1/2 (hours) AUC ss (ng•hr/mL) 61.6 ± 27.54 2.6 ± 0.9 13.3 ± 8.07 373.4 ± 164.94 C max = maximum concentration, t max = time to reach C max , t 1/2 = elimination half-life, AUC ss = steady state area under the concentration-time curve Figure 1: Mean (±SD) Silodosin Steady State Plasma Concentration-Time Profile in Healthy Target-Aged Subjects Following Silodosin 8 mg Once Daily with Food The absolute bioavailability is approximately 32%. Food Effect The maximum effect of food (i.e., co-administration with a high fat, high calorie meal) on the PK of silodosin was not evaluated. The effect of a moderate fat, moderate calorie meal was variable and decreased silodosin C max by approximately 18 to 43% and AUC by 4 to 49% across three different studies. In a single-center, open-label, single-dose, randomized, two-period crossover study in twenty healthy male subjects age 21 to 43 years under fed conditions, a study was conducted to evaluate the relative bioavailability of the contents of an 8 mg capsule (size #1) of silodosin sprinkled on applesauce compared to the product administered as an intact capsule. Based on AUC 0-24 and C max , silodosin administered by sprinkling the contents of a silodosin capsules capsule onto a tablespoonful of applesauce was found to be bioequivalent to administering the capsule whole. Distribution Silodosin has an apparent volume of distribution of 49.5 L and is approximately 97% protein bound. Metabolism Silodosin undergoes extensive metabolism through glucuronidation, alcohol and aldehyde dehydrogenase, and cytochrome P450 3A4 (CYP3A4) pathways. The main metabolite of silodosin is a glucuronide conjugate (KMD-3213G) that is formed via direct conjugation of silodosin by UDP-glucuronosyltransferase 2B7 (UGT2B7). Co-administration with inhibitors of UGT2B7 (e.g., probenecid, valproic acid, fluconazole) may potentially increase exposure to silodosin. KMD-3213G, which has been shown in vitro to be active, has an extended half-life (approximately 24 hours) and reaches plasma exposure (AUC) approximately four times greater than that of silodosin. The second major metabolite (KMD-3293) is formed via alcohol and aldehyde dehydrogenases and reaches plasma exposures similar to that of silodosin. KMD-3293 is not expected to contribute significantly to the overall pharmacologic activity of silodosin capsules. Excretion Following oral administration of 14 C-labeled silodosin, the recovery of radioactivity after 10 days was approximately 33.5% in urine and 54.9% in feces. After intravenous administration, the plasma clearance of silodosin was approximately 10 L/hour. Special Populations Race No clinical studies specifically investigating the effects of race have been performed. Geriatric In a study comparing 12 geriatric males (mean age 69 years) and 9 young males (mean age 24 years), the exposure (AUC) and elimination half-life of silodosin were approximately 15% and 20%, respectively, greater in geriatric than young subjects. No difference in the C max of silodosin was observed [ see Use in Specific Populations (8.5) ]. Pediatric Silodosin capsule has not been evaluated in patients less than 18 years of age. Renal Impairment In a study with six subjects with moderate renal impairment, the total silodosin (bound and unbound) AUC, C max , and elimination half-life were 3.2-, 3.1-, and 2-fold higher, respectively, compared to seven subjects with normal renal function. The unbound silodosin AUC and C max were 2- and 1.5-fold higher, respectively, in subjects with moderate renal impairment compared to the normal controls. In controlled and uncontrolled clinical studies, the incidence of orthostatic hypotension and dizziness was greater in subjects with moderate renal impairment treated with 8 mg silodosin capsules daily than in subjects with normal or mildly impaired renal function [ see Contraindications (4), Warnings and Precautions (5.2) and Use in Specific Populations (8.6) ]. Hepatic Impairment In a study comparing nine male patients with moderate hepatic impairment (Child-Pugh scores 7 to 9), to nine healthy male subjects, the single dose pharmacokinetic disposition of silodosin was not significantly altered in the patients with moderate hepatic impairment. No dosing adjustment is required in patients with mild or moderate hepatic impairment. The pharmacokinetics of silodosin in patients with severe hepatic impairment have not been studied [ see Contraindications (4), Warnings and Precautions (5.3) and Use in Specific Populations (8.7) ]. Drug Interactions Cytochrome P450 (CYP) 3A4 Inhibitors Two clinical drug interaction studies were conducted in which a single oral dose of silodosin was co-administered with the strong CYP3A4 inhibitor, ketoconazole, at doses of 400 mg and 200 mg, respectively, once daily for 4 days. Co-administration of 8 mg silodosin with 400 mg ketoconazole led to 3.8-fold increase in silodosin C max and 3.2-fold increase in AUC. Co-administration of 4 mg silodosin with 200 mg ketoconazole led to similar increases: 3.7- and 2.9-fold in silodosin C max and AUC, respectively. Silodosin is contraindicated with strong CYP3A4 inhibitors. The effect of moderate CYP3A4 inhibitors on the pharmacokinetics of silodosin has not been evaluated. Due to the potential for increased exposure to silodosin, caution should be exercised when co-administering silodosin with moderate CYP3A4 inhibitors, particularly those that also inhibit P-glycoprotein (e.g., verapamil, erythromycin). P-glycoprotein (P-gp) Inhibitors In vitro studies indicated that silodosin is a P-gp substrate. A drug interaction study with a strong P-gp inhibitor has not been conducted. However, in drug interaction studies with ketoconazole, a CYP3A4 inhibitor that also inhibits P-gp, significant increase in exposure to silodosin was observed (see Clinical Pharmacology, Drug Interactions, CYP3A4 Inhibitors ). Inhibition of P-gp may lead to increased silodosin concentration. Silodosin is not recommended in patients taking strong P-gp inhibitors (e.g., cyclosporine). Digoxin The effect of silodosin on the pharmacokinetics of digoxin was evaluated in a multiple dose, single-sequence, crossover study of 16 healthy males, aged 18 to 45 years. A loading dose of digoxin was administered as 0.5 mg twice daily for one day. Following the loading doses, digoxin (0.25 mg once daily) was administered alone for seven days and then concomitantly with silodosin 4 mg twice a day for the next seven days. No significant differences in digoxin AUC and C max were observed when digoxin was administered alone or concomitantly with silodosin. Other Metabolic Enzymes and Transporters In vitro studies indicated that silodosin administration is not likely to inhibit the activity of CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 or induce the activity of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A4, and P-gp. Figure 1

Pharmacokinetics Table

Cmax (ng/mL) tmax (hours) t1/2 (hours) AUCss (ng•hr/mL)
61.6 ± 27.54 2.6 ± 0.9 13.3 ± 8.07 373.4 ± 164.94

Effective Time

20230130

Version

2

Dosage Forms And Strengths

3 DOSAGE FORMS AND STRENGTHS The 4 mg capsules are white opaque/white opaque, hard gelatin capsules of size “3” imprinted with “A238” on cap in gold ink, filled with white to off-white powder. The 8 mg capsules are white opaque/white opaque, hard gelatin capsules of size “1” imprinted with “A239” on cap in green ink, filled with white to off-white powder. Capsules: 8 mg and 4 mg. (3)

Spl Product Data Elements

Silodosin Silodosin SILODOSIN SILODOSIN STARCH, CORN SODIUM LAURYL SULFATE MAGNESIUM STEARATE GELATIN, UNSPECIFIED TITANIUM DIOXIDE SHELLAC PROPYLENE GLYCOL FERRIC OXIDE YELLOW SUCROSE white opaque A238 Silodosin Silodosin SILODOSIN SILODOSIN STARCH, CORN SODIUM LAURYL SULFATE MAGNESIUM STEARATE GELATIN, UNSPECIFIED TITANIUM DIOXIDE SHELLAC PROPYLENE GLYCOL FERRIC OXIDE YELLOW FD&C BLUE NO. 1 SUCROSE white opaque A239

Carcinogenesis And Mutagenesis And Impairment Of Fertility

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 2-year oral carcinogenicity study in rats administered doses up to 150 mg/kg/day [about 8 times the exposure of the maximum recommended human dose (MRHE ) based on AUC of silodosin], an increase in thyroid follicular cell tumor incidence was seen in male rats receiving doses of 150 mg/kg/day. Silodosin induced stimulation of thyroid stimulating hormone (TSH) secretion in the male rat as a result of increased metabolism and decreased circulating levels of thyroxine (T4). These changes are believed to produce specific morphological and functional changes in the rat thyroid including hypertrophy, hyperplasia, and neoplasia. Silodosin did not alter TSH or T4 levels in clinical trials and no effects based on thyroid examinations were noted. The relevance to human risk of these thyroid tumors in rats is not known. In a 2-year oral carcinogenicity study in mice administered doses up to 100 mg/kg/day in males (about nine times the MRHE based on AUC of silodosin) and 400 mg/kg/day in females (about 72 times the MRHE based on AUC), there were no significant tumor findings in male mice. Female mice treated for 2 years with doses of 150 mg/kg/day (about 29 times the MRHE based on AUC) or greater had statistically significant increases in the incidence of mammary gland adenoacanthomas and adenocarcinomas. The increased incidence of mammary gland neoplasms in female mice was considered secondary to silodosin-induced hyperprolactinemia measured in the treated mice. Elevated prolactin levels were not observed in clinical trials. The relevance to human risk of prolactin-mediated endocrine tumors in mice is not known. Rats and mice do not produce glucuronidated silodosin, which is present in human serum at approximately four times the level of circulating silodosin and which has similar pharmacological activity to silodosin. Silodosin produced no evidence of mutagenic or genotoxic potential in the in vitro Ames assay, mouse lymphoma assay, unscheduled DNA synthesis assay and the in vivo mouse micronucleus assay. A weakly positive response was obtained in two in vitro Chinese Hamster Lung (CHL) tests for chromosomal aberration assays at high, cytotoxic concentrations. Treatment of male rats with silodosin for 15 days resulted in decreased fertility at the high dose of 20 mg/kg/day (about twice the MRHE) which was reversible following a two week recovery period. No effect was observed at 6 mg/kg/day. The clinical relevance of this finding is not known. In a fertility study in female rats, the high dose of 20 mg/kg/day (about 1 to 4 times the MRHE) resulted in estrus cycle changes, but no effect on fertility. No effect on the estrus cycle was observed at 6 mg/kg/day. In a male rat fertility study, sperm viability and count were significantly lower after administration of 600 mg/kg/day (about 65 times the MRHE) for one month. Histopathological examination of infertile males revealed changes in the testes and epididymides at 200 mg/kg/day (about 30 times the MRHE).

Nonclinical Toxicology

13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 2-year oral carcinogenicity study in rats administered doses up to 150 mg/kg/day [about 8 times the exposure of the maximum recommended human dose (MRHE ) based on AUC of silodosin], an increase in thyroid follicular cell tumor incidence was seen in male rats receiving doses of 150 mg/kg/day. Silodosin induced stimulation of thyroid stimulating hormone (TSH) secretion in the male rat as a result of increased metabolism and decreased circulating levels of thyroxine (T4). These changes are believed to produce specific morphological and functional changes in the rat thyroid including hypertrophy, hyperplasia, and neoplasia. Silodosin did not alter TSH or T4 levels in clinical trials and no effects based on thyroid examinations were noted. The relevance to human risk of these thyroid tumors in rats is not known. In a 2-year oral carcinogenicity study in mice administered doses up to 100 mg/kg/day in males (about nine times the MRHE based on AUC of silodosin) and 400 mg/kg/day in females (about 72 times the MRHE based on AUC), there were no significant tumor findings in male mice. Female mice treated for 2 years with doses of 150 mg/kg/day (about 29 times the MRHE based on AUC) or greater had statistically significant increases in the incidence of mammary gland adenoacanthomas and adenocarcinomas. The increased incidence of mammary gland neoplasms in female mice was considered secondary to silodosin-induced hyperprolactinemia measured in the treated mice. Elevated prolactin levels were not observed in clinical trials. The relevance to human risk of prolactin-mediated endocrine tumors in mice is not known. Rats and mice do not produce glucuronidated silodosin, which is present in human serum at approximately four times the level of circulating silodosin and which has similar pharmacological activity to silodosin. Silodosin produced no evidence of mutagenic or genotoxic potential in the in vitro Ames assay, mouse lymphoma assay, unscheduled DNA synthesis assay and the in vivo mouse micronucleus assay. A weakly positive response was obtained in two in vitro Chinese Hamster Lung (CHL) tests for chromosomal aberration assays at high, cytotoxic concentrations. Treatment of male rats with silodosin for 15 days resulted in decreased fertility at the high dose of 20 mg/kg/day (about twice the MRHE) which was reversible following a two week recovery period. No effect was observed at 6 mg/kg/day. The clinical relevance of this finding is not known. In a fertility study in female rats, the high dose of 20 mg/kg/day (about 1 to 4 times the MRHE) resulted in estrus cycle changes, but no effect on fertility. No effect on the estrus cycle was observed at 6 mg/kg/day. In a male rat fertility study, sperm viability and count were significantly lower after administration of 600 mg/kg/day (about 65 times the MRHE) for one month. Histopathological examination of infertile males revealed changes in the testes and epididymides at 200 mg/kg/day (about 30 times the MRHE).

Application Number

ANDA211731

Brand Name

Silodosin

Generic Name

Silodosin

Product Ndc

46708-406

Product Type

HUMAN PRESCRIPTION DRUG

Route

ORAL

Package Label Principal Display Panel

PACKAGE LABEL.PRINCIPAL DISPLAY PANEL - 4 mg NDC 46708-405-30 Silodosin Capsules 4 mg per capsule Rx only 30 Capsules Alembic 30 Capsules

Recent Major Changes

DOSAGE AND ADMINISTRATION, Dosing Information (2.1) 12/2012 CONTRAINDICATIONS (4) 01/2013

Information For Patients

17 PATIENT COUNSELING INFORMATION Patients should be instructed to take silodosin capsules once daily with a meal. Patients should be instructed about the possible occurrence of symptoms related to postural hypotension (such as dizziness), and should be cautioned about driving, operating machinery, or performing hazardous tasks until they know how silodosin capsules will affect them. This is especially important for those with low blood pressure or who are taking antihypertensive medications. The most common side effect seen with silodosin capsules is an orgasm with reduced or no semen. This side effect does not pose a safety concern and is reversible with discontinuation of the product. The patient should be instructed to tell his ophthalmologist about the use of silodosin capsules before cataract surgery or other procedures involving the eyes, even if the patient is no longer taking silodosin capsules. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. Rx only Manufactured by: Alembic Pharmaceuticals Limited (Formulation Division), Village Panelav, P. O. Tajpura, Near Baska, Taluka-Halol, Panchmahal 389350, Gujarat, India. Revised: 11/2019

Clinical Studies

14 CLINICAL STUDIES 14.1 Benign Prostatic Hyperplasia Two 12-week, randomized, double-blind, placebo-controlled, multicenter studies were conducted with 8 mg daily of silodosin. In these two studies, 923 patients [mean age 64.6 years; Caucasian (89.3%), Hispanic (4.9%), Black (3.9%), Asian (1.2%), Other (0.8%)] were randomized and 466 patients received silodosin capsules 8 mg daily. The two studies were identical in design except for the inclusion of pharmacokinetic sampling in Study 1. The primary efficacy assessment was the International Prostate Symptom Score (IPSS) which evaluated irritative (frequency, urgency, and nocturia), and obstructive (hesitancy, incomplete emptying, intermittency, and weak stream) symptoms. Maximum urine flow rate (Qmax) was a secondary efficacy measure. Mean changes from baseline to last assessment (Week 12) in total IPSS score were statistically significantly greater for groups treated with silodosin capsules than those treated with placebo in both studies (Table 4 and Figures 2 and 3). Table 4: Mean Change (SD) from Baseline to Week 12 in International Prostate Symptom Score in Two Randomized, Controlled, Double-Blind Studies Total Symptom Score Study 1 Study 2 Silodosin Capsules 8 mg (n = 233) Placebo (n = 228) p-value Silodosin Capsules 8 mg (n = 233) Placebo (n = 229) p-value Baseline 21.5 (5.38) 21.4 (4.91) 21.2 (4.88) 21.2 (4.92) Week 12 / LOCF Change from Baseline -6.5 (6.73) -3.6 (5.85) < 0.0001 -6.3 (6.54) -3.4 (5.83) < 0.0001 LOCF – Last observation carried forward for those not completing 12 weeks of treatment. Figure 2: Mean Change from Baseline in IPSS Total Score by Treatment Group and Visit in Study 1 B – Baseline determination taken Day 1 of the study before the initial dose. Subsequent values are observed cases except for LOCF values. LOCF – Last observation carried forward for those not completing 12 weeks of treatment. Figure 3: Mean Change from Baseline in IPSS Total Score by Treatment Group and Visit in Study 2 B – Baseline determination taken Day 1 of the study before the initial dose. Subsequent values are observed cases except for LOCF values. LOCF – Last observation carried forward for those not completing 12 weeks of treatment. Mean IPSS total score for silodosin capsules once daily groups showed a decrease starting at the first scheduled observation and remained decreased through the 12 weeks of treatment in both studies. Silodosin capsules produced statistically significant increases in maximum urinary flow rates from baseline to last assessment (Week 12) versus placebo in both studies (Table 5 and Figures 4 and 5). Mean peak flow rate increased starting at the first scheduled observation at Day 1 and remained greater than the baseline flow rate through the 12 weeks of treatment for both studies. Table 5: Mean Change (SD) from Baseline in Maximum Urinary Flow Rate (mL/sec) in Two Randomized, Controlled, Double-Blind Studies Mean Maximum Flow Rate (mL/sec) Study 1 Study 2 Silodosin Capsules 8 mg (n = 233) Placebo (n = 228) p-value Silodosin Capsules 8 mg (n = 233) Placebo (n = 229) p-value Baseline 9 (2.6 ) 9 (2.85) 8.4 (2.48) 8.7 (2.67) Week 12 / LOCF Change from Baseline 2.2 (4.31) 1.2 (3.81) 0.006 2.9 (4.53) 1.9 (4.82) 0.0431 LOCF – Last observation carried forward for those not completing 12 weeks of treatment. Figure 4: Mean Change from Baseline in Qmax (mL/sec) by Treatment Group and Visit in Study 1 B – Baseline determination taken Day 1 of the study before the initial dose. Subsequent values are observed cases except for LOCF values. LOCF – Last observation carried forward for those not completing 12 weeks of treatment. Note – The first Qmax assessments at Day 1 were taken 2 to 6 hours after patients received the first dose of double-blind medication. Note – Measurements at each visit were scheduled 2 to 6 hours after dosing (approximate peak plasma silodosin concentration). Figure 5: Mean Change from Baseline in Qmax (mL/sec) by Treatment Group and Visit in Study 2 B – Baseline determination taken Day 1 of the study before the initial dose. Subsequent values are observed cases except for LOCF values. LOCF – Last observation carried forward for those not completing 12 weeks of treatment. Note – The first Qmax assessments at Day 1 were taken 2 to 6 hours after patients received the first dose of double-blind medication. Note – Measurements at each visit were scheduled 2 to 6 hours after dosing (approximate peak plasma silodosin concentration). Figure 2 Figure 3 Figure 4 Figure 5

Clinical Studies Table

Total Symptom Score Study 1Study 2
Silodosin Capsules 8 mg (n = 233) Placebo (n = 228) p-value Silodosin Capsules 8 mg (n = 233)Placebo (n = 229) p-value
Baseline 21.5 (5.38) 21.4 (4.91) 21.2 (4.88) 21.2 (4.92)
Week 12 / LOCF Change from Baseline -6.5 (6.73) -3.6 (5.85) < 0.0001 -6.3 (6.54) -3.4 (5.83) < 0.0001

Geriatric Use

8.5 Geriatric Use In double-blind, placebo-controlled, 12-week clinical studies of silodosin capsules, 259 (55.6%) were under 65 years of age, 207 (44.4%) patients were 65 years of age and over, while 60 (12.9%) patients were 75 years of age and over. Orthostatic hypotension was reported in 2.3% of silodosin capsules patients <65 years of age (1.2% for placebo), 2.9% of silodosin capsules patients ≥65 years of age (1.9% for placebo), and 5% of patients ≥75 years of age (0% for placebo). There were otherwise no significant differences in safety or effectiveness between older and younger patients [see Clinical Pharmacology (12.3)] .

Pediatric Use

8.4 Pediatric Use Silodosin capsules are not indicated for use in pediatric patients. Safety and effectiveness in pediatric patients have not been established.

Pregnancy

8.1 Pregnancy Pregnancy Category B. Silodosin capsule is not indicated for use in women. An embryo/fetal study in rabbits showed decreased maternal body weight at 200 mg/kg/day (approximately 13 to 25 times the maximum recommended human exposure or MRHE of silodosin via AUC). No statistically significant teratogenicity was observed at this dose. Silodosin was not teratogenic when administered to pregnant rats during organogenesis at 1000 mg/kg/day (estimated to be approximately 20 times the MRHE). No maternal or fetal effects were observed at this dose. Rats and rabbits do not produce glucuronidated silodosin, which is present in human serum at approximately 4 times the level of circulating silodosin and which has similar pharmacological activity to silodosin. No effects on physical or behavioral development of offspring were observed when rats were treated during pregnancy and lactation at up to 300 mg/kg/day.

Use In Specific Populations

8 USE IN SPECIFIC POPULATIONS Renal impairment: Dose adjustment in moderate disease (2.2). Contraindicatedin severe renal disease. (4) Hepatic impairment: Contraindicated in severe disease. (4) 8.1 Pregnancy Pregnancy Category B. Silodosin capsule is not indicated for use in women. An embryo/fetal study in rabbits showed decreased maternal body weight at 200 mg/kg/day (approximately 13 to 25 times the maximum recommended human exposure or MRHE of silodosin via AUC). No statistically significant teratogenicity was observed at this dose. Silodosin was not teratogenic when administered to pregnant rats during organogenesis at 1000 mg/kg/day (estimated to be approximately 20 times the MRHE). No maternal or fetal effects were observed at this dose. Rats and rabbits do not produce glucuronidated silodosin, which is present in human serum at approximately 4 times the level of circulating silodosin and which has similar pharmacological activity to silodosin. No effects on physical or behavioral development of offspring were observed when rats were treated during pregnancy and lactation at up to 300 mg/kg/day. 8.4 Pediatric Use Silodosin capsules are not indicated for use in pediatric patients. Safety and effectiveness in pediatric patients have not been established. 8.5 Geriatric Use In double-blind, placebo-controlled, 12-week clinical studies of silodosin capsules, 259 (55.6%) were under 65 years of age, 207 (44.4%) patients were 65 years of age and over, while 60 (12.9%) patients were 75 years of age and over. Orthostatic hypotension was reported in 2.3% of silodosin capsules patients <65 years of age (1.2% for placebo), 2.9% of silodosin capsules patients ≥65 years of age (1.9% for placebo), and 5% of patients ≥75 years of age (0% for placebo). There were otherwise no significant differences in safety or effectiveness between older and younger patients [see Clinical Pharmacology (12.3)] . 8.6 Renal Impairment The effect of renal impairment on silodosin pharmacokinetics was evaluated in a single dose study of six male patients with moderate renal impairment and seven male subjects with normal renal function. Plasma concentrations of silodosin were approximately three times higher in subjects with moderate renal impairment compared with subjects with normal renal function. Silodosin capsules should be reduced to 4 mg per day in patients with moderate renal impairment. Exercise caution and monitor patients for adverse events. Silodosin capsule has not been studied in patients with severe renal impairment. Silodosin capsules are contraindicated in patients with severe renal impairment [ see Contraindications (4), Warnings and Precautions (5.2) and Clinical Pharmacology (12.3) ]. 8.7 Hepatic Impairment In a study comparing nine male patients with moderate hepatic impairment (Child-Pugh scores 7 to 9), to nine healthy male subjects, the single dose pharmacokinetics of silodosin were not significantly altered in patients with hepatic impairment. No dosing adjustment is required in patients with mild or moderate hepatic impairment. Silodosin capsule has not been studied in patients with severe hepatic impairment. Silodosin capsules are contraindicated in patients with severe hepatic impairment [see Contraindications (4), Warnings and Precautions (5.3) and Clinical Pharmacology (12.3)] .

How Supplied

16 HOW SUPPLIED/STORAGE AND HANDLING 4 mg capsules are white opaque/white opaque, hard gelatin capsules of size “3” imprinted with “A238” on cap in gold ink, filled with white to off-white powder. 4 mg capsules are supplied as follows: NDC 46708-405-30 Bottle of 30 capsules NDC 46708-405-90 Bottle of 90 capsules NDC 46708-405-91 Bottle of 1000 capsules 8 mg capsules are white opaque/white opaque, hard gelatin capsules of size “1” imprinted with “A239” on cap in green ink, filled with white to off-white powder. NDC 46708-406-30 Bottle of 30 capsules NDC 46708-406-90 Bottle of 90 capsules NDC 46708-406-91 Bottle of 1000 capsules Storage Store at 25°C (77°F); excursions permitted to 15 to 30°C (59 to 86°F) [see USP Controlled Room Temperature.] Protect from light and moisture. Keep out of reach of children.

Learning Zones

The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.

Disclaimer

The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).

Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.

Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.