- Home
- /
- Drugs
- /
- B
- /
- Bortezomib
- /
- Bortezomib BORTEZOMIB 1 mg/mL Fresenius Kabi USA, LLC
Bortezomib
Summary of product characteristics
Adverse Reactions
6 ADVERSE REACTIONS The following adverse reactions are also discussed in other sections of the labeling: Peripheral Neuropathy [see Warnings and Precautions ( 5.1 )] Hypotension [see Warnings and Precautions ( 5.2 )] Cardiac Toxicity [see Warnings and Precautions ( 5.3 )] Pulmonary Toxicity [see Warnings and Precautions ( 5.4 )] Posterior Reversible Encephalopathy Syndrome (PRES) [see Warnings and Precautions ( 5.5 )] Gastrointestinal Toxicity [see Warnings and Precautions ( 5.6 )] Thrombocytopenia/Neutropenia [see Warnings and Precautions ( 5.7 )] Tumor Lysis Syndrome [see Warnings and Precautions ( 5.8 )] Hepatic Toxicity [see Warnings and Precautions ( 5.9 )] Thrombotic Microangiopathy [see Warnings and Precautions ( 5.10 )] Most commonly reported adverse reactions (incidence ≥ 20%) in clinical studies include nausea, diarrhea, thrombocytopenia, neutropenia, peripheral neuropathy, fatigue, neuralgia, anemia, leukopenia, constipation, vomiting, lymphopenia, rash, pyrexia, and anorexia. ( 6.1 ) To report SUSPECTED ADVERSE REACTIONS, contact Fresenius Kabi USA, LLC at 1-800-551-7176 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch . 6.1 Clinical Trials Safety Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. Summary of Clinical Trial in Patients with Previously Untreated Multiple Myeloma Table 8 describes safety data from 340 patients with previously untreated multiple myeloma who received bortezomib (1.3 mg/m 2 ) administered intravenously in combination with melphalan (9 mg/m 2 ) and prednisone (60 mg/m 2 ) in a prospective randomized study. The safety profile of bortezomib in combination with melphalan/prednisone is consistent with the known safety profiles of both bortezomib and melphalan/prednisone. Table 8: Most Commonly Reported Adverse Reactions (≥ 10% in the Bortezomib, Melphalan and Prednisone arm) with Grades 3 and ≥ 4 Intensity in the Previously Untreated Multiple Myeloma Study Bortezomib, Melphalan and Prednisone Melphalan and Prednisone (n=340) (n=337) Body System Total Toxicity Grade, n (%) Total Toxicity Grade, n (%) Adverse Reaction n (%) 3 ≥ 4 n (%) 3 ≥ 4 Blood and Lymphatic System Disorders Thrombocytopenia 164 (48) 60 (18) 57 (17) 140 (42) 48 (14) 39 (12) Neutropenia 160 (47) 101 (30) 33 (10) 143 (42) 77 (23) 42 (12) Anemia 109 (32) 41 (12) 4 (1) 156 (46) 61 (18) 18 (5) Leukopenia 108 (32) 64 (19) 8 (2) 93 (28) 53 (16) 11 (3) Lymphopenia 78 (23) 46 (14) 17 (5) 51 (15) 26 (8) 7 (2) Gastrointestinal Disorders Nausea 134 (39) 10 (3) 0 70 (21) 1 (<1) 0 Diarrhea 119 (35) 19 (6) 2 (1) 20 (6) 1 (<1) 0 Vomiting 87 (26) 13 (4) 0 41 (12) 2 (1) 0 Constipation 77 (23) 2 (1) 0 14 (4) 0 0 Abdominal Pain Upper 34 (10) 1 (<1) 0 20 (6) 0 0 Nervous System Disorders Peripheral Neuropathy a 156 (46) 42 (12) 2 (1) 4 (1) 0 0 Neuralgia 117 (34) 27 (8) 2 (1) 1 (<1) 0 0 Paresthesia 42 (12) 6 (2) 0 4 (1) 0 0 General Disorders and Administration Site Conditions Fatigue 85 (25) 19 (6) 2 (1) 48 (14) 4 (1) 0 Asthenia 54 (16) 18 (5) 0 23 (7) 3 (1) 0 Pyrexia 53 (16) 4 (1) 0 19 (6) 1 (<1) 1 (<1) Infections and Infestations Herpes Zoster 39 (11) 11 (3) 0 9 (3) 4 (1) 0 Metabolism and Nutrition Disorders Anorexia 64 (19) 6 (2) 0 19 (6) 0 0 Skin and Subcutaneous Tissue Disorders Rash 38 (11) 2 (1) 0 7 (2) 0 0 Psychiatric Disorders Insomnia 35 (10) 1 (<1) 0 21 (6) 0 0 a Represents High Level Term Peripheral Neuropathies NEC Relapsed Multiple Myeloma Randomized Study of Bortezomib versus Dexamethasone The safety data described below and in Table 9 reflect exposure to either bortezomib (n=331) or dexamethasone (n=332) in a study of patients with relapsed multiple myeloma. Bortezomib was administered intravenously at doses of 1.3 mg/m 2 twice weekly for 2 out of 3 weeks (21-day cycle). After eight 21-day cycles patients continued therapy for three 35-day cycles on a weekly schedule. Duration of treatment was up to 11 cycles (9 months) with a median duration of 6 cycles (4.1 months). For inclusion in the trial, patients must have had measurable disease and 1 to 3 prior therapies. There was no upper age limit for entry. Creatinine clearance could be as low as 20 mL/min and bilirubin levels as high as 1.5 times the upper limit of normal. The overall frequency of adverse reactions was similar in men and women, and in patients < 65 and ≥ 65 years of age. Most patients were Caucasian [see Clinical Studies ( 14.1 )] . Among the 331 bortezomib-treated patients, the most commonly reported (> 20%) adverse reactions overall were nausea (52%), diarrhea (52%), fatigue (39%), peripheral neuropathies (35%), thrombocytopenia (33%), constipation (30%), vomiting (29%), and anorexia (21%). The most commonly reported (> 20%) adverse reaction reported among the 332 patients in the dexamethasone group was fatigue (25%). Eight percent (8%) of patients in the bortezomib-treated arm experienced a Grade 4 adverse reaction; the most common reactions were thrombocytopenia (4%) and neutropenia (2%). Nine percent (9%) of dexamethasone-treated patients experienced a Grade 4 adverse reaction. All individual dexamethasone-related Grade 4 adverse reactions were less than 1%. Serious Adverse Reactions and Adverse Reactions Leading to Treatment Discontinuation in the Relapsed Multiple Myeloma Study of Bortezomib versus Dexamethasone Serious adverse reactions are defined as any reaction that results in death, is life-threatening, requires hospitalization or prolongs a current hospitalization, results in a significant disability, or is deemed to be an important medical event. A total of 80 (24%) patients from the bortezomib treatment arm experienced a serious adverse reaction during the study, as did 83 (25%) dexamethasone-treated patients. The most commonly reported serious adverse reactions in the bortezomib treatment arm were diarrhea (3%), dehydration, herpes zoster, pyrexia, nausea, vomiting, dyspnea, and thrombocytopenia (2% each). In the dexamethasone treatment group, the most commonly reported serious adverse reactions were pneumonia (4%), hyperglycemia (3%), pyrexia, and psychotic disorder (2% each). A total of 145 patients, including 84 (25%) of 331 patients in the bortezomib treatment group and 61 (18%) of 332 patients in the dexamethasone treatment group were discontinued from treatment due to adverse reactions. Among the 331 bortezomib-treated patients, the most commonly reported adverse reaction leading to discontinuation was peripheral neuropathy (8%). Among the 332 patients in the dexamethasone group, the most commonly reported adverse reactions leading to treatment discontinuation were psychotic disorder and hyperglycemia (2% each). Four deaths were considered to be bortezomib-related in this relapsed multiple myeloma study: 1 case each of cardiogenic shock, respiratory insufficiency, congestive heart failure and cardiac arrest. Four deaths were considered dexamethasone-related: 2 cases of sepsis, 1 case of bacterial meningitis, and 1 case of sudden death at home. Most Commonly Reported Adverse Reactions in the Relapsed Multiple Myeloma Study of Bortezomib versus Dexamethasone The most common adverse reactions from the relapsed multiple myeloma study are shown in Table 9 . All adverse reactions with incidence ≥ 10% in the bortezomib arm are included. Table 9: Most Commonly Reported Adverse Reactions (≥ 10% in Bortezomib arm), with Grades 3 and 4 Intensity in the Relapsed Multiple Myeloma Study of Bortezomib versus Dexamethasone (N=663) a Represents High Level Term Peripheral Neuropathies NEC Bortezomib N=331 Dexamethasone N=332 Adverse Reactions All Grade 3 Grade 4 All Grade 3 Grade 4 Any Adverse Reactions 324 (98) 193 (58) 28 (8) 297 (89) 110 (33) 29 (9) Nausea 172 (52) 8 (2) 0 31 (9) 0 0 Diarrhea NOS 171 (52) 22 (7) 0 36 (11) 2 (<1) 0 Fatigue 130 (39) 15 (5) 0 82 (25) 8 (2) 0 Peripheral neuropathies a 115 (35) 23 (7) 2 (<1) 14 (4) 0 1 (<1) Thrombocytopenia 109 (33) 80 (24) 12 (4) 11 (3) 5 (2) 1 (<1) Constipation 99 (30) 6 (2) 0 27 (8) 1 (<1) 0 Vomiting NOS 96 (29) 8 (2) 0 10 (3) 1 (<1) 0 Anorexia 68 (21) 8 (2) 0 8 (2) 1 (<1) 0 Pyrexia 66 (20) 2 (<1) 0 21 (6) 3 (<1) 1 (<1) Paresthesia 64 (19) 5 (2) 0 24 (7) 0 0 Anemia NOS 63 (19) 20 (6) 1 (<1) 21 (6) 8 (2) 0 Headache NOS 62 (19) 3 (<1) 0 23 (7) 1 (<1) 0 Neutropenia 58 (18) 37 (11) 8 (2) 1 (<1) 1 (<1) 0 Rash NOS 43 (13) 3 (<1) 0 7 (2) 0 0 Appetite decreased NOS 36 (11) 0 0 12 (4) 0 0 Dyspnea NOS 35 (11) 11 (3) 1 (<1) 37 (11) 7 (2) 1 (<1) Abdominal pain NOS 35 (11) 5 (2) 0 7 (2) 0 0 Weakness 34 (10) 10 (3) 0 28 (8) 8 (2) 0 Safety Experience from the Phase 2 Open-Label Extension Study in Relapsed Multiple Myeloma In the phase 2 extension study of 63 patients, no new cumulative or new long-term toxicities were observed with prolonged bortezomib treatment. These patients were treated for a total of 5.3 to 23 months, including time on bortezomib in the prior bortezomib study [see Clinical Studies ( 14.1 )] . Integrated Summary of Safety (Relapsed Multiple Myeloma and Relapsed Mantle Cell Lymphoma) Safety data from phase 2 and 3 studies of single agent bortezomib 1.3 mg/m 2 /dose twice weekly for 2 weeks followed by a 10-day rest period in 1,163 patients with previously-treated multiple myeloma (N=1,008) and previously-treated mantle cell lymphoma (N=155) were integrated and tabulated. This analysis does not include data from the Phase 3 Open-Label Study of bortezomib subcutaneous versus intravenous in relapsed multiple myeloma. In the integrated studies, the safety profile of bortezomib was similar in patients with multiple myeloma and mantle cell lymphoma. In the integrated analysis, the most commonly reported (> 20%) adverse reactions were nausea (49%), diarrhea (46%), asthenic conditions including fatigue (41%) and weakness (11%), peripheral neuropathies (38%), thrombocytopenia (32%), vomiting (28%), constipation (25%), and pyrexia (21%). Eleven percent (11%) of patients experienced at least 1 episode of ≥ Grade 4 toxicity, most commonly thrombocytopenia (4%) and neutropenia (2%). In the Phase 2 relapsed multiple myeloma clinical trials of bortezomib administered intravenously, local skin irritation was reported in 5% of patients, but extravasation of bortezomib was not associated with tissue damage. Serious Adverse Reactions and Adverse Reactions Leading to Treatment Discontinuation in the Integrated Summary of Safety A total of 26% of patients experienced a serious adverse reaction during the studies. The most commonly reported serious adverse reactions included diarrhea, vomiting and pyrexia (3% each), nausea, dehydration, and thrombocytopenia (2% each) and pneumonia, dyspnea, peripheral neuropathies, and herpes zoster (1% each). Adverse reactions leading to discontinuation occurred in 22% of patients. The reasons for discontinuation included peripheral neuropathy (8%), and fatigue, thrombocytopenia, and diarrhea (2% each). In total, 2% of the patients died and the cause of death was considered by the investigator to be possibly related to study drug: including reports of cardiac arrest, congestive heart failure, respiratory failure, renal failure, pneumonia and sepsis. Most Commonly Reported Adverse Reactions in the Integrated Summary of Safety The most common adverse reactions are shown in Table 10 . All adverse reactions occurring at ≥ 10% are included. In the absence of a randomized comparator arm, it is often not possible to distinguish between adverse events that are drug-caused and those that reflect the patient's underlying disease. Please see the discussion of specific adverse reactions that follows. Table 10: Most Commonly Reported (≥ 10% Overall) Adverse Reactions in Integrated Analyses of Relapsed Multiple Myeloma and Relapsed Mantle Cell Lymphoma Studies using the 1.3 mg/m 2 Dose (N=1,163) * Represents High Level Term Peripheral Neuropathies NEC All Patients N=1163 Multiple Myeloma N=1008 Mantle Cell Lymphoma N=155 Adverse Reactions All ≥ Grade 3 All ≥ Grade 3 All ≥ Grade 3 Nausea 567 (49) 36 (3) 511 (51) 32 (3) 56 (36) 4 (3) Diarrhea NOS 530 (46) 83 (7) 470 (47) 72 (7) 60 (39) 11 (7) Fatigue 477 (41) 86 (7) 396 (39) 71 (7) 81 (52) 15 (10) Peripheral neuropathies* 443 (38) 129 (11) 359 (36) 110 (11) 84 (54) 19 (12) Thrombocytopenia 369 (32) 295 (25) 344 (34) 283 (28) 25 (16) 12 (8) Vomiting NOS 321 (28) 44 (4) 286 (28) 40 (4) 35 (23) 4 (3) Constipation 296 (25) 17 (1) 244 (24) 14 (1) 52 (34) 3 (2) Pyrexia 249 (21) 16 (1) 233 (23) 15 (1) 16 (10) 1 (<1) Anorexia 227 (20) 19 (2) 205 (20) 16 (2) 22 (14) 3 (2) Anemia NOS 209 (18) 65 (6) 190 (19) 63 (6) 19 (12) 2 (1) Headache NOS 175 (15) 8 (<1) 160 (16) 8 (<1) 15 (10) 0 Neutropenia 172 (15) 121 (10) 164 (16) 117 (12) 8 (5) 4 (3) Rash NOS 156 (13) 8 (<1) 120 (12) 4 (<1) 36 (23) 4 (3) Paresthesia 147 (13) 9 (<1) 136 (13) 8 (<1) 11 (7) 1 (<1) Dizziness (excl vertigo) 129 (11) 13 (1) 101 (10) 9 (<1) 28 (18) 4 (3) Weakness 124 (11) 31 (3) 106 (11) 28 (3) 18 (12) 3 (2) Description of Selected Adverse Reactions from the Integrated Phase 2 and 3 Relapsed Multiple Myeloma and Phase 2 Relapsed Mantle Cell Lymphoma Studies Gastrointestinal Toxicity A total of 75% of patients experienced at least one gastrointestinal disorder. The most common gastrointestinal disorders included nausea, diarrhea, constipation, vomiting, and appetite decreased. Other gastrointestinal disorders included dyspepsia and dysgeusia. Grade 3 adverse reactions occurred in 14% of patients; ≥ Grade 4 adverse reactions were ≤ 1%. Gastrointestinal adverse reactions were considered serious in 7% of patients. Four percent (4%) of patients discontinued due to a gastrointestinal adverse reaction. Nausea was reported more often in patients with multiple myeloma (51%) compared to patients with mantle cell lymphoma (36%). Thrombocytopenia Across the studies, bortezomib-associated thrombocytopenia was characterized by a decrease in platelet count during the dosing period (days 1 to 11) and a return toward baseline during the 10-day rest period during each treatment cycle. Overall, thrombocytopenia was reported in 32% of patients. Thrombocytopenia was Grade 3 in 22%, ≥ Grade 4 in 4%, and serious in 2% of patients, and the reaction resulted in bortezomib discontinuation in 2% of patients [see Warnings and Precautions ( 5.7 )] . Thrombocytopenia was reported more often in patients with multiple myeloma (34%) compared to patients with mantle cell lymphoma (16%). The incidence of ≥ Grade 3 thrombocytopenia also was higher in patients with multiple myeloma (28%) compared to patients with mantle cell lymphoma (8%). Peripheral Neuropathy Overall, peripheral neuropathies occurred in 38% of patients. Peripheral neuropathy was Grade 3 for 11% of patients and ≥ Grade 4 for < 1% of patients. Eight percent (8%) of patients discontinued bortezomib due to peripheral neuropathy. The incidence of peripheral neuropathy was higher among patients with mantle cell lymphoma (54%) compared to patients with multiple myeloma (36%). In the bortezomib versus dexamethasone phase 3 relapsed multiple myeloma study, among the 62 bortezomib- treated patients who experienced ≥ Grade 2 peripheral neuropathy and had dose adjustments, 48% had improved or resolved with a median of 3.8 months from first onset. In the phase 2 relapsed multiple myeloma studies, among the 30 patients who experienced Grade 2 peripheral neuropathy resulting in discontinuation or who experienced ≥ Grade 3 peripheral neuropathy, 73% reported improvement or resolution with a median time of 47 days to improvement of one Grade or more from the last dose of bortezomib. Hypotension The incidence of hypotension (postural, orthostatic and hypotension NOS) was 8% in patients treated with bortezomib. Hypotension was Grade 1 or 2 in the majority of patients and Grade 3 in 2% and ≥ Grade 4 in < 1%. Two percent (2%) of patients had hypotension reported as a serious adverse reaction, and 1% discontinued due to hypotension. The incidence of hypotension was similar in patients with multiple myeloma (8%) and those with mantle cell lymphoma (9%). In addition, < 1% of patients experienced hypotension associated with a syncopal reaction. Neutropenia Neutrophil counts decreased during the bortezomib dosing period (days 1 to 11) and returned toward baseline during the 10-day rest period during each treatment cycle. Overall, neutropenia occurred in 15% of patients and was Grade 3 in 8% of patients and ≥ Grade 4 in 2%. Neutropenia was reported as a serious adverse reaction in < 1% of patients and < 1% of patients discontinued due to neutropenia. The incidence of neutropenia was higher in patients with multiple myeloma (16%) compared to patients with mantle cell lymphoma (5%). The incidence of ≥ Grade 3 neutropenia also was higher in patients with multiple myeloma (12%) compared to patients with mantle cell lymphoma (3%). Asthenic conditions (Fatigue, Malaise, Weakness, Asthenia) Asthenic conditions were reported in 54% of patients. Fatigue was reported as Grade 3 in 7% and ≥ Grade 4 in < 1% of patients. Asthenia was reported as Grade 3 in 2% and ≥ Grade 4 in < 1% of patients. Two percent (2%) of patients discontinued treatment due to fatigue and < 1% due to weakness and asthenia. Asthenic conditions were reported in 53% of patients with multiple myeloma and 59% of patients with mantle cell lymphoma. Pyrexia Pyrexia (> 38ºC) was reported as an adverse reaction for 21% of patients. The reaction was Grade 3 in 1% and ≥ Grade 4 in < 1%. Pyrexia was reported as a serious adverse reaction in 3% of patients and led to bortezomib discontinuation in < 1% of patients. The incidence of pyrexia was higher among patients with multiple myeloma (23%) compared to patients with mantle cell lymphoma (10%). The incidence of ≥ Grade 3 pyrexia was 1% in patients with multiple myeloma and < 1% in patients with mantle cell lymphoma. Herpes Virus Infection Consider using antiviral prophylaxis in subjects being treated with Bortezomib for Injection. In the randomized studies in previously untreated and relapsed multiple myeloma, herpes zoster reactivation was more common in subjects treated with bortezomib (ranging between 6 to 11%) than in the control groups (3 to 4%). Herpes simplex was seen in 1 to 3% in subjects treated with bortezomib and 1 to 3% in the control groups. In the previously untreated multiple myeloma study, herpes zoster virus reactivation in the bortezomib, melphalan and prednisone arm was less common in subjects receiving prophylactic antiviral therapy (3%) than in subjects who did not receive prophylactic antiviral therapy (17%). Retreatment in Relapsed Multiple Myeloma A single-arm trial was conducted in 130 patients with relapsed multiple myeloma to determine the efficacy and safety of retreatment with intravenous bortezomib. The safety profile of patients in this trial is consistent with the known safety profile of bortezomib-treated patients with relapsed multiple myeloma as demonstrated in Tables 9 and 10 ; no cumulative toxicities were observed upon retreatment. The most common adverse drug reaction was thrombocytopenia which occurred in 52% of the patients. The incidence of ≥ Grade 3 thrombocytopenia was 24%. Peripheral neuropathy occurred in 28% of patients, with the incidence of ≥ Grade 3 peripheral neuropathy reported at 6%. The incidence of serious adverse reactions was 12.3%. The most commonly reported serious adverse reactions were thrombocytopenia (3.8%), diarrhea (2.3%), and herpes zoster and pneumonia (1.5% each). Adverse reactions leading to discontinuation occurred in 13% of patients. The reasons for discontinuation included peripheral neuropathy (5%) and diarrhea (3%). Two deaths considered to be bortezomib-related occurred within 30 days of the last bortezomib dose; one in a patient with cerebrovascular accident and one in a patient with sepsis. Additional Adverse Reactions from Clinical Studies The following clinically important serious adverse reactions that are not described above have been reported in clinical trials in patients treated with bortezomib administered as monotherapy or in combination with other chemotherapeutics. These studies were conducted in patients with hematological malignancies and in solid tumors. Blood and lymphatic system disorders: Anemia, disseminated intravascular coagulation, febrile neutropenia, lymphopenia, leukopenia Cardiac disorders: Angina pectoris, atrial fibrillation aggravated, atrial flutter, bradycardia, sinus arrest, cardiac amyloidosis, complete atrioventricular block, myocardial ischemia, myocardial infarction, pericarditis, pericardial effusion, Torsades de pointes , ventricular tachycardia Ear and labyrinth disorders: Hearing impaired, vertigo Eye disorders: Diplopia and blurred vision, conjunctival infection, irritation Gastrointestinal disorders: Abdominal pain, ascites, dysphagia, fecal impaction, gastroenteritis, gastritis hemorrhagic, hematemesis, hemorrhagic duodenitis, ileus paralytic, large intestinal obstruction, paralytic intestinal obstruction, peritonitis, small intestinal obstruction, large intestinal perforation, stomatitis, melena, pancreatitis acute, oral mucosal petechiae, gastroesophageal reflux General disorders and administration site conditions: Chills, edema, edema peripheral, injection site erythema, neuralgia, injection site pain, irritation, malaise, phlebitis Hepatobiliary disorders: Cholestasis, hepatic hemorrhage, hyperbilirubinemia, portal vein thrombosis, hepatitis, liver failure Immune system disorders: Anaphylactic reaction, drug hypersensitivity, immune complex mediated hypersensitivity, angioedema, laryngeal edema Infections and infestations: Aspergillosis, bacteremia, bronchitis, urinary tract infection, herpes viral infection, listeriosis, nasopharyngitis, pneumonia, respiratory tract infection, septic shock, toxoplasmosis, oral candidiasis, sinusitis, catheter-related infection Injury, poisoning and procedural complications: Catheter-related complication, skeletal fracture, subdural hematoma Investigations: Weight decreased Metabolism and nutrition disorders: Dehydration, hypocalcemia, hyperuricemia, hypokalemia, hyperkalemia, hyponatremia, hypernatremia Musculoskeletal and connective tissue disorders: Arthralgia, back pain, bone pain, myalgia, pain in extremity Nervous system disorders: Ataxia, coma, dizziness, dysarthria, dysesthesia, dysautonomia, encephalopathy, cranial palsy, grand mal convulsion, headache, hemorrhagic stroke, motor dysfunction, neuralgia, spinal cord compression, paralysis, postherpetic neuralgia, transient ischemic attack Psychiatric disorders: Agitation, anxiety, confusion, insomnia, mental status change, psychotic disorder, suicidal ideation Renal and urinary disorders: Calculus renal, bilateral hydronephrosis, bladder spasm, hematuria, hemorrhagic cystitis, urinary incontinence, urinary retention, renal failure (acute and chronic), glomerular nephritis proliferative Respiratory, thoracic and mediastinal disorders: Acute respiratory distress syndrome, aspiration pneumonia, atelectasis, chronic obstructive airways disease exacerbated, cough, dysphagia, dyspnea, dyspnea exertional, epistaxis, hemoptysis, hypoxia, lung infiltration, pleural effusion, pneumonitis, respiratory distress, pulmonary hypertension Skin and subcutaneous tissue disorders: Urticaria, face edema, rash (which may be pruritic), leukocytoclastic vasculitis, pruritus Vascular disorders: Cerebrovascular accident, cerebral hemorrhage, deep venous thrombosis, hypertension, peripheral embolism, pulmonary embolism, pulmonary hypertension 6.2 Postmarketing Experience The following adverse reactions have been identified from the worldwide postmarketing experience with bortezomib. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure: Cardiac disorders: Cardiac tamponade Ear and labyrinth disorders: Deafness bilateral Eye disorders: Optic neuropathy, blindness, chalazion/blepharitis Gastrointestinal disorders: Ischemic colitis Infections and infestations: Progressive multifocal leukoencephalopathy (PML), ophthalmic herpes, herpes meningoencephalitis Nervous system disorders: Posterior reversible encephalopathy syndrome (PRES, formerly RPLS) Respiratory, thoracic and mediastinal disorders: Acute diffuse infiltrative pulmonary disease Skin and subcutaneous tissue disorders: Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), acute febrile neutrophilic dermatosis (Sweet's syndrome)
Contraindications
4 CONTRAINDICATIONS Bortezomib for Injection is contraindicated in patients with hypersensitivity (not including local reactions) to bortezomib, boron, boric acid or glycine. Reactions have included anaphylactic reactions [see Adverse Reactions ( 6.1 )] . Bortezomib for Injection is contraindicated for intrathecal administration. Fatal events have occurred with intrathecal administration of bortezomib. Patients with hypersensitivity (not including local reactions) to bortezomib, boron, boric acid or glycine, including anaphylactic reactions. ( 4 ) Contraindicated for intrathecal administration. ( 4 )
Description
11 DESCRIPTION Bortezomib for Injection is a proteasome inhibitor available for intravenous injection. Each single-dose vial contains 3.5 mg of bortezomib, 10.5 mg boric acid, 25 mg glycine as a sterile lyophilized powder. The chemical name for bortezomib, the monomeric boronic acid, is [(1R)-3-methyl-1- [[(2S)-1-oxo-3-phenyl-2- [(pyrazinylcarbonyl) amino]propyl]amino]butyl] boronic acid. Bortezomib has the following chemical structure: The molecular weight of bortezomib is 384.24 and its molecular formula is C 19 H 25 BN 4 O 4 . The solubility of bortezomib, as the monomeric boronic acid, in water is 3.3 to 3.8 mg/mL in a pH range of 2 to 6.5. Chemical Structure
Dosage And Administration
2 DOSAGE AND ADMINISTRATION For intravenous use only. Exercise caution when calculating the volume to be administered. ( 2.1 , 2.8 ) The recommended starting dose of Bortezomib for Injection is 1.3 mg/m 2 administered as a 3 to 5 second bolus intravenous injection. ( 2.2 , 2.4 ) Retreatment for multiple myeloma: May retreat starting at the last tolerated dose. ( 2.4 ) Hepatic Impairment: Use a lower starting dose for patients with moderate or severe hepatic impairment. ( 2.6 ) Dose must be individualized to prevent overdose. ( 2.8 ) 2.1 Important Dosing Guidelines Bortezomib for Injection is for intravenous use only. Do not administer Bortezomib for Injection by any other route. The recommended starting dose of Bortezomib for Injection is 1.3 mg/m 2 . Bortezomib for Injection is administered intravenously at a concentration of 1 mg/mL [see Dosage and Administration ( 2.8 )] . Bortezomib for Injection retreatment may be considered for patients with multiple myeloma who had previously responded to treatment with Bortezomib for Injection and who have relapsed at least six months after completing prior Bortezomib for Injection treatment. Treatment may be started at the last tolerated dose [see Dosage and Administration ( 2.4 )] . When administered intravenously, Bortezomib for Injection is administered as a 3 to 5 second bolus intravenous injection. 2.2 Dosage in Previously Untreated Multiple Myeloma Bortezomib for Injection is administered in combination with oral melphalan and oral prednisone for nine 6- week treatment cycles as shown in Table 1 . In Cycles 1 to 4, Bortezomib for Injection is administered twice weekly (Days 1, 4, 8, 11, 22, 25, 29 and 32). In Cycles 5 to 9, Bortezomib for Injection is administered once weekly (Days 1, 8, 22 and 29). At least 72 hours should elapse between consecutive doses of Bortezomib for Injection. Table 1: Dosage Regimen for Patients with Previously Untreated Multiple Myeloma Twice Weekly Bortezomib for Injection (Cycles 1 to 4) Week 1 2 3 4 5 6 Bortezomib for Injection (1.3 mg/m 2 ) Day 1 -- -- Day 4 Day 8 Day 11 rest period Day 22 Day 25 Day 29 Day 32 rest period Melphalan (9 mg/m 2 ) Prednisone (60 mg/m 2 ) Day 1 Day 2 Day 3 Day 4 -- -- rest period -- -- -- -- rest period Once Weekly Bortezomib for Injection (Cycles 5 to 9 when used in combination with Melphalan and Prednisone) Week 1 2 3 4 5 6 Bortezomib for Injection (1.3 mg/m 2 ) Day 1 -- -- Day 8 rest period Day 22 Day 29 rest period Melphalan (9 mg/m 2 ) Prednisone (60 mg/m 2 ) Day 1 Day 2 Day 3 Day 4 -- -- rest period -- -- -- -- rest period 2.3 Dose Modification Guidelines for Bortezomib for Injection When Given in Combination with Melphalan and Prednisone Prior to initiating any cycle of therapy with Bortezomib for Injection in combination with melphalan and prednisone: Platelet count should be at least 70 x 10 9 /L and the absolute neutrophil count (ANC) should be at least 1 x 10 9 /L Non-hematological toxicities should have resolved to Grade 1 or baseline Table 2: Dose Modifications During Cycles of Combination Bortezomib for Injection, Melphalan and Prednisone Therapy Toxicity Dose modification or delay Hematological toxicity during a cycle: If prolonged Grade 4 neutropenia or thrombocytopenia, or thrombocytopenia with bleeding is observed in the previous cycle Consider reduction of the melphalan dose by 25% in the next cycle If platelet count is not above 30 x 10 9 /L or ANC is not above 0.75 x 10 9 /L on a Bortezomib for Injection dosing day (other than Day 1) Withhold Bortezomib for Injection dose If several Bortezomib for Injection doses in consecutive cycles are withheld due to toxicity Reduce Bortezomib for Injection dose by one dose level (from 1.3 mg/m 2 to 1 mg/m 2 , or from 1 mg/m 2 to 0.7 mg/m 2 ) Grade 3 or higher non-hematological toxicities Withhold Bortezomib for Injection therapy until symptoms of toxicity have resolved to Grade 1 or baseline. Then, Bortezomib for Injection may be reinitiated with one dose level reduction (from 1.3 mg/m 2 to 1 mg/m 2 , or from 1 mg/m 2 to 0.7 mg/m 2 ). For Bortezomib for Injection-related neuropathic pain and/or peripheral neuropathy, hold or modify Bortezomib for Injection as outlined in Table 4 . For information concerning melphalan and prednisone, see manufacturer's prescribing information. Dose modifications guidelines for peripheral neuropathy are provided [see Dosage and Administration ( 2.5 )] . 2.4 Dosage and Dose Modifications for Relapsed Multiple Myeloma and Relapsed Mantle Cell Lymphoma Bortezomib for Injection (1.3 mg/m 2 /dose) is administered twice weekly for two weeks (Days 1, 4, 8, and 11) followed by a ten day rest period (Days 12 to 21). For extended therapy of more than eight cycles, Bortezomib for Injection may be administered on the standard schedule or, for relapsed multiple myeloma, on a maintenance schedule of once weekly for four weeks (Days 1, 8, 15, and 22) followed by a 13 day rest period (Days 23 to 35) [see Clinical Studies ( 14 )] . At least 72 hours should elapse between consecutive doses of Bortezomib for Injection. Patients with multiple myeloma who have previously responded to treatment with Bortezomib for Injection (either alone or in combination) and who have relapsed at least six months after their prior Bortezomib for Injection therapy may be started on Bortezomib for Injection at the last tolerated dose. Retreated patients are administered Bortezomib for Injection twice weekly (Days 1, 4, 8, and 11) every three weeks for a maximum of eight cycles. At least 72 hours should elapse between consecutive doses of Bortezomib for Injection. Bortezomib for Injection may be administered either as a single agent or in combination with dexamethasone [see Clinical Studies ( 14.1 )] . Bortezomib for Injection therapy should be withheld at the onset of any Grade 3 non-hematological or Grade 4 hematological toxicities excluding neuropathy as discussed below [see Warnings and Precautions ( 5 )] . Once the symptoms of the toxicity have resolved, Bortezomib for Injection therapy may be reinitiated at a 25% reduced dose (1.3 mg/m 2 /dose reduced to 1 mg/m 2 /dose; 1 mg/m 2 /dose reduced to 0.7 mg/m 2 /dose). For dose modifications guidelines for peripheral neuropathy see section 2.5. 2.5 Dose Modifications for Peripheral Neuropathy Patients with pre-existing severe neuropathy should be treated with Bortezomib for Injection only after careful risk-benefit assessment. Patients experiencing new or worsening peripheral neuropathy during Bortezomib for Injection therapy may require a decrease in the dose and/or a less dose-intense schedule. For dose or schedule modification guidelines for patients who experience Bortezomib for Injection-related neuropathic pain and/or peripheral neuropathy see Table 4 . Table 4: Recommended Dose Modification for Bortezomib for Injection related Neuropathic Pain and/or Peripheral Sensory or Motor Neuropathy * Grading based on NCI Common Terminology Criteria CTCAE v4.0 † Instrumental ADL: refers to preparing meals, shopping for groceries or clothes, using telephone, managing money etc; ‡ Self care ADL: refers to bathing, dressing and undressing, feeding self, using the toilet, taking medications, and not bedridden Severity of Peripheral Neuropathy Signs and Symptoms* Modification of Dose and Regimen Grade 1 (asymptomatic; loss of deep tendon reflexes or paresthesia) without pain or loss of function No action Grade 1 with pain or Grade 2 (moderate symptoms; limiting instrumental Activities of Daily Living (ADL) † ) Reduce Bortezomib for Injection to 1 mg/m 2 Grade 2 with pain or Grade 3 (severe symptoms; limiting self care ADL ‡ ) Withhold Bortezomib for Injection therapy until toxicity resolves. When toxicity resolves reinitiate with a reduced dose of Bortezomib for Injection at 0.7 mg/m 2 once per week. Grade 4 (life-threatening consequences; urgent intervention indicated) Discontinue Bortezomib for Injection 2.6 Dosage in Patients with Hepatic Impairment Do not adjust the starting dose for patients with mild hepatic impairment. Start patients with moderate or severe hepatic impairment at a reduced dose of 0.7 mg/m 2 per injection during the first cycle, and consider subsequent dose escalation to 1 mg/m 2 or further dose reduction to 0.5 mg/m 2 based on patient tolerance (see Table 5 ) [see Use in Specific Populations ( 8.7 ), Clinical Pharmacology ( 12.3 )] . Table 5: Recommended Starting Dose Modification for Bortezomib for Injection in Patients with Hepatic Impairment Abbreviations: SGOT = serum glutamic oxaloacetic transaminase; AST = aspartate aminotransferase; ULN = upper limit of the normal range. Bilirubin Level SGOT (AST) Levels Modification of Starting Dose Mild Less than or equal to 1 times ULN More than ULN None More than 1 to 1.5 times ULN Any None Moderate More than 1.5 to 3 times ULN Any Reduce Bortezomib for Injection to 0.7 mg/m 2 in the first cycle. Consider dose escalation to 1 mg/m 2 or further dose reduction to 0.5 mg/m 2 in subsequent cycles based on patient tolerability. Severe More than 3 times ULN Any 2.7 Administration Precautions The drug quantity contained in one vial (3.5 mg) may exceed the usual dose required. Use caution in calculating the dose to prevent overdose [see Dosage and Administration ( 2.8 )] . Bortezomib for Injection is a hazardous drug 1 . Use procedures for proper handling and disposal [see How Supplied/Storage and Handling ( 16 )] . 2.8 Reconstitution/Preparation for Intravenous Administration Use proper aseptic technique. Reconstitute only with 0.9% sodium chloride . The reconstituted product should be a clear and colorless solution. For each 3.5 mg single-dose vial of Bortezomib for Injection reconstitute with the following volume of 0.9% sodium chloride ( Table 6 ): Table 6: Reconstitution Volumes and Final Concentration for Intravenous Administration Route of administration Bortezomib (mg/vial) Diluent (0.9% Sodium Chloride) Final Bortezomib concentration (mg/mL) Intravenous 3.5 mg 3.5 mL 1 mg/mL Dose must be individualized to prevent overdosage. After determining patient body surface area (BSA) in square meters, use the following equation to calculate the total volume (mL) of reconstituted Bortezomib for Injection to be administered: Intravenous Administration [1 mg/mL concentration] Bortezomib for Injection dose (mg/m 2 ) x patient BSA (m 2 ) =Total Bortezomib for Injection volume (mL) to be administered 1 mg/mL A sticker that indicates the route of administration is provided with each Bortezomib for Injection vial. The sticker should be placed directly on the syringe of Bortezomib for Injection once Bortezomib for Injection is prepared to help alert practitioners of the correct route of administration for Bortezomib for Injection. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. If any discoloration or particulate matter is observed, the reconstituted product should not be used. Stability: Unopened vials of Bortezomib for Injection are stable until the date indicated on the package when stored in the original package protected from light. Bortezomib for Injection contains no antimicrobial preservative. Administer reconstituted Bortezomib for Injection within 8 hours of preparation. When reconstituted as directed, Bortezomib for Injection may be stored at 25°C (77°F). The reconstituted material may be stored in the original vial and/or the syringe prior to administration. The product may be stored for up to 8 hours in a syringe; however, total storage time for the reconstituted material must not exceed 8 hours when exposed to normal indoor lighting.
Indications And Usage
1 INDICATIONS AND USAGE Bortezomib for Injection is a proteasome inhibitor indicated for: treatment of adult patients with multiple myeloma ( 1.1 ) treatment of adult patients with mantle cell lymphoma who have received at least 1 prior therapy ( 1.2 ) 1.1 Multiple Myeloma Bortezomib for Injection is indicated for the treatment of adult patients with multiple myeloma. 1.2 Mantle Cell Lymphoma Bortezomib for Injection is indicated for the treatment of adult patients with mantle cell lymphoma who have received at least 1 prior therapy.
Overdosage
10 OVERDOSAGE There is no known specific antidote for bortezomib overdosage. In humans, fatal outcomes following the administration of more than twice the recommended therapeutic dose have been reported, which were associated with the acute onset of symptomatic hypotension ( 5.2 ) and thrombocytopenia ( 5.7 ). In the event of an overdosage, the patient's vital signs should be monitored and appropriate supportive care given. Studies in monkeys and dogs showed that intravenous bortezomib doses as low as 2 times the recommended clinical dose on a mg/m 2 basis were associated with increases in heart rate, decreases in contractility, hypotension, and death. In dog studies, a slight increase in the corrected QT interval was observed at doses resulting in death. In monkeys, doses of 3 mg/m 2 and greater (approximately twice the recommended clinical dose) resulted in hypotension starting at 1 hour post-administration, with progression to death in 12 to 14 hours following drug administration.
Adverse Reactions Table
Bortezomib, Melphalan and Prednisone | Melphalan and Prednisone | |||||
(n=340) | (n=337) | |||||
Body System | Total | Toxicity Grade, n (%) | Total | Toxicity Grade, n (%) | ||
Adverse Reaction | n (%) | 3 | ≥ 4 | n (%) | 3 | ≥ 4 |
Blood and Lymphatic System Disorders | ||||||
Thrombocytopenia | 164 (48) | 60 (18) | 57 (17) | 140 (42) | 48 (14) | 39 (12) |
Neutropenia | 160 (47) | 101 (30) | 33 (10) | 143 (42) | 77 (23) | 42 (12) |
Anemia | 109 (32) | 41 (12) | 4 (1) | 156 (46) | 61 (18) | 18 (5) |
Leukopenia | 108 (32) | 64 (19) | 8 (2) | 93 (28) | 53 (16) | 11 (3) |
Lymphopenia | 78 (23) | 46 (14) | 17 (5) | 51 (15) | 26 (8) | 7 (2) |
Gastrointestinal Disorders | ||||||
Nausea | 134 (39) | 10 (3) | 0 | 70 (21) | 1 (<1) | 0 |
Diarrhea | 119 (35) | 19 (6) | 2 (1) | 20 (6) | 1 (<1) | 0 |
Vomiting | 87 (26) | 13 (4) | 0 | 41 (12) | 2 (1) | 0 |
Constipation | 77 (23) | 2 (1) | 0 | 14 (4) | 0 | 0 |
Abdominal Pain Upper | 34 (10) | 1 (<1) | 0 | 20 (6) | 0 | 0 |
Nervous System Disorders | ||||||
Peripheral Neuropathya | 156 (46) | 42 (12) | 2 (1) | 4 (1) | 0 | 0 |
Neuralgia | 117 (34) | 27 (8) | 2 (1) | 1 (<1) | 0 | 0 |
Paresthesia | 42 (12) | 6 (2) | 0 | 4 (1) | 0 | 0 |
General Disorders and Administration Site Conditions | ||||||
Fatigue | 85 (25) | 19 (6) | 2 (1) | 48 (14) | 4 (1) | 0 |
Asthenia | 54 (16) | 18 (5) | 0 | 23 (7) | 3 (1) | 0 |
Pyrexia | 53 (16) | 4 (1) | 0 | 19 (6) | 1 (<1) | 1 (<1) |
Infections and Infestations | ||||||
Herpes Zoster | 39 (11) | 11 (3) | 0 | 9 (3) | 4 (1) | 0 |
Metabolism and Nutrition Disorders | ||||||
Anorexia | 64 (19) | 6 (2) | 0 | 19 (6) | 0 | 0 |
Skin and Subcutaneous Tissue Disorders | ||||||
Rash | 38 (11) | 2 (1) | 0 | 7 (2) | 0 | 0 |
Psychiatric Disorders | ||||||
Insomnia | 35 (10) | 1 (<1) | 0 | 21 (6) | 0 | 0 |
Drug Interactions
7 DRUG INTERACTIONS Strong CYP3A4 Inhibitors: Closely monitor patients with concomitant use. ( 7.1 ) Strong CYP3A4 Inducers: Avoid concomitant use. (7.3) 7.1 Effects of Other Drugs on Bortezomib Strong CYP3A4 Inducers Coadministration with a strong CYP3A4 inducer decreases the exposure of bortezomib [see Clinical Pharmacology ( 12.3 )] which may decrease bortezomib efficacy. Avoid coadministration with strong CYP3A4 inducers. Strong CYP3A4 Inhibitors Coadministration with a strong CYP3A4 inhibitor increases the exposure of bortezomib [see Clinical Pharmacology ( 12.3 )] which may increase the risk of bortezomib toxicities. Monitor patients for signs of bortezomib toxicity and consider a bortezomib dose reduction if bortezomib must be given in combination with strong CYP3A4 inhibitors. 7.2 Drugs Without Clinically Significant Interactions with Bortezomib No clinically significant drug interactions have been observed when bortezomib was coadministered with dexamethasone, omeprazole, or melphalan in combination with prednisone [see Clinical Pharmacology ( 12.3 )] .
Clinical Pharmacology
12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated proteins. The ubiquitin proteasome pathway plays an essential role in regulating the intracellular concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling cascades within the cell. This disruption of normal homeostatic mechanisms can lead to cell death. Experiments have demonstrated that bortezomib is cytotoxic to a variety of cancer cell types in vitro . Bortezomib causes a delay in tumor growth in vivo in nonclinical tumor models, including multiple myeloma. 12.2 Pharmacodynamics Following twice weekly administration of 1 mg/m 2 and 1.3 mg/m 2 bortezomib doses, the maximum inhibition of 20S proteasome activity (relative to baseline) in whole blood was observed 5 minutes after drug administration. Comparable maximum inhibition of 20S proteasome activity was observed between 1 and 1.3 mg/m 2 doses. Maximal inhibition ranged from 70% to 84% and from 73% to 83% for the 1 mg/m 2 and 1.3 mg/m 2 dose regimens, respectively. 12.3 Pharmacokinetics Following intravenous administration of 1 mg/m 2 and 1.3 mg/m 2 doses, the mean maximum plasma concentrations of bortezomib (C max ) after the first dose (Day 1) were 57 and 112 ng/mL, respectively. When administered twice weekly, the mean maximum observed plasma concentrations ranged from 67 to 106 ng/mL for the 1 mg/m 2 dose and 89 to 120 ng/mL for the 1.3 mg/m 2 dose. Distribution: The mean distribution volume of bortezomib ranged from approximately 498 to 1,884 L/m 2 following single- or repeat-dose administration of 1 mg/m 2 or 1.3 mg/m 2 to patients with multiple myeloma. The binding of bortezomib to human plasma proteins averaged 83% over the concentration range of 100 to 1,000 ng/mL. Elimination: The mean elimination half-life of bortezomib upon multiple dosing ranged from 40 to 193 hours after the 1 mg/m 2 dose and 76 to 108 hours after the 1.3 mg/m 2 dose. The mean total body clearances were 102 and 112 L/h following the first dose for doses of 1 mg/m 2 and 1.3 mg/m 2 , respectively, and ranged from 15 to 32 L/h following subsequent doses for doses of 1 and 1.3 mg/m 2 , respectively. Metabolism: Bortezomib is primarily oxidatively metabolized to several inactive metabolites in vitro via cytochrome P450 (CYP) enzymes 3A4, CYP2C19, and CYP1A2, and to a lesser extent by CYP2D6 and CYP2C9. Excretion: The pathways of elimination of bortezomib have not been characterized in humans. Specific Populations: No clinically significant differences in the pharmacokinetics of bortezomib were observed based on age, sex, or renal impairment (including patients administered Bortezomib for Injection after dialysis). The effect of race on bortezomib pharmacokinetics is unknown. Patients with Hepatic Impairment: Following administration of bortezomib doses ranging from 0.5 to 1.3 mg/m 2 , mild (total bilirubin ≤ 1x ULN and AST > ULN, or total bilirubin >1 to 1.5x ULN and any AST) hepatic impairment did not alter dose- normalized bortezomib AUC when compared to patients with normal hepatic function. Dose normalized mean bortezomib AUC increased by approximately 60% in patients with moderate (total bilirubin >1.5 to 3x ULN and any AST) or severe (total bilirubin >3x ULN and any AST) hepatic impairment. A lower starting dose is recommended in patients with moderate or severe hepatic impairment. Drug Interaction Studies: Clinical Studies No clinically significant differences in bortezomib pharmacokinetics were observed when coadministered with dexamethasone (weak CYP3A4 inducer), omeprazole (strong CYP2C19 inhibitor), or melphalan in combination with prednisone. Strong CYP3A4 inhibitor Coadministration with ketoconazole (strong CYP3A4 inhibitor) increased bortezomib exposure by 35%. Strong CYP3A4 inducer Coadministration with rifampin (strong CYP3A4 inducer) decreased bortezomib exposure by approximately 45%. In Vitro Studies Bortezomib may inhibit CYP2C19 activity and increase exposure to drugs that are substrates for this enzyme.
Mechanism Of Action
12.1 Mechanism of Action Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated proteins. The ubiquitin proteasome pathway plays an essential role in regulating the intracellular concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling cascades within the cell. This disruption of normal homeostatic mechanisms can lead to cell death. Experiments have demonstrated that bortezomib is cytotoxic to a variety of cancer cell types in vitro . Bortezomib causes a delay in tumor growth in vivo in nonclinical tumor models, including multiple myeloma.
Pharmacodynamics
12.2 Pharmacodynamics Following twice weekly administration of 1 mg/m 2 and 1.3 mg/m 2 bortezomib doses, the maximum inhibition of 20S proteasome activity (relative to baseline) in whole blood was observed 5 minutes after drug administration. Comparable maximum inhibition of 20S proteasome activity was observed between 1 and 1.3 mg/m 2 doses. Maximal inhibition ranged from 70% to 84% and from 73% to 83% for the 1 mg/m 2 and 1.3 mg/m 2 dose regimens, respectively.
Pharmacokinetics
12.3 Pharmacokinetics Following intravenous administration of 1 mg/m 2 and 1.3 mg/m 2 doses, the mean maximum plasma concentrations of bortezomib (C max ) after the first dose (Day 1) were 57 and 112 ng/mL, respectively. When administered twice weekly, the mean maximum observed plasma concentrations ranged from 67 to 106 ng/mL for the 1 mg/m 2 dose and 89 to 120 ng/mL for the 1.3 mg/m 2 dose. Distribution: The mean distribution volume of bortezomib ranged from approximately 498 to 1,884 L/m 2 following single- or repeat-dose administration of 1 mg/m 2 or 1.3 mg/m 2 to patients with multiple myeloma. The binding of bortezomib to human plasma proteins averaged 83% over the concentration range of 100 to 1,000 ng/mL. Elimination: The mean elimination half-life of bortezomib upon multiple dosing ranged from 40 to 193 hours after the 1 mg/m 2 dose and 76 to 108 hours after the 1.3 mg/m 2 dose. The mean total body clearances were 102 and 112 L/h following the first dose for doses of 1 mg/m 2 and 1.3 mg/m 2 , respectively, and ranged from 15 to 32 L/h following subsequent doses for doses of 1 and 1.3 mg/m 2 , respectively. Metabolism: Bortezomib is primarily oxidatively metabolized to several inactive metabolites in vitro via cytochrome P450 (CYP) enzymes 3A4, CYP2C19, and CYP1A2, and to a lesser extent by CYP2D6 and CYP2C9. Excretion: The pathways of elimination of bortezomib have not been characterized in humans. Specific Populations: No clinically significant differences in the pharmacokinetics of bortezomib were observed based on age, sex, or renal impairment (including patients administered Bortezomib for Injection after dialysis). The effect of race on bortezomib pharmacokinetics is unknown. Patients with Hepatic Impairment: Following administration of bortezomib doses ranging from 0.5 to 1.3 mg/m 2 , mild (total bilirubin ≤ 1x ULN and AST > ULN, or total bilirubin >1 to 1.5x ULN and any AST) hepatic impairment did not alter dose- normalized bortezomib AUC when compared to patients with normal hepatic function. Dose normalized mean bortezomib AUC increased by approximately 60% in patients with moderate (total bilirubin >1.5 to 3x ULN and any AST) or severe (total bilirubin >3x ULN and any AST) hepatic impairment. A lower starting dose is recommended in patients with moderate or severe hepatic impairment. Drug Interaction Studies: Clinical Studies No clinically significant differences in bortezomib pharmacokinetics were observed when coadministered with dexamethasone (weak CYP3A4 inducer), omeprazole (strong CYP2C19 inhibitor), or melphalan in combination with prednisone. Strong CYP3A4 inhibitor Coadministration with ketoconazole (strong CYP3A4 inhibitor) increased bortezomib exposure by 35%. Strong CYP3A4 inducer Coadministration with rifampin (strong CYP3A4 inducer) decreased bortezomib exposure by approximately 45%. In Vitro Studies Bortezomib may inhibit CYP2C19 activity and increase exposure to drugs that are substrates for this enzyme.
Effective Time
20220414
Version
6
Dosage And Administration Table
Twice Weekly Bortezomib for Injection (Cycles 1 to 4) | ||||||||||||
Week | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
Bortezomib for Injection (1.3 mg/m2) | Day 1 | -- | -- | Day 4 | Day 8 | Day 11 | rest period | Day 22 | Day 25 | Day 29 | Day 32 | rest period |
Melphalan (9 mg/m2) Prednisone (60 mg/m2) | Day 1 | Day 2 | Day 3 | Day 4 | -- | -- | rest period | -- | -- | -- | -- | rest period |
Once Weekly Bortezomib for Injection (Cycles 5 to 9 when used in combination with Melphalan and Prednisone) | ||||||||||||
Week | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
Bortezomib for Injection (1.3 mg/m2) | Day 1 | -- | -- | Day 8 | rest period | Day 22 | Day 29 | rest period | ||||
Melphalan (9 mg/m2) Prednisone (60 mg/m2) | Day 1 | Day 2 | Day 3 | Day 4 | -- | -- | rest period | -- | -- | -- | -- | rest period |
Dosage Forms And Strengths
3 DOSAGE FORMS AND STRENGTHS For injection: 3.5 mg of bortezomib as a white to off-white lyophilized powder in a single-dose vial for reconstitution [see Dosage and Administration ( 2.8 )] . For injection: Single-dose vial contains 3.5 mg of bortezomib as lyophilized powder for reconstitution. ( 3 )
Spl Product Data Elements
Bortezomib Bortezomib BORIC ACID GLYCINE BORTEZOMIB BORTEZOMIB
Animal Pharmacology And Or Toxicology
13.2 Animal Toxicology and/or Pharmacology Cardiovascular Toxicity: Studies in monkeys showed that administration of dosages approximately twice the recommended clinical dose resulted in heart rate elevations, followed by profound progressive hypotension, bradycardia, and death 12 to 14 hours post dose. Doses ≥ 1.2 mg/m 2 induced dose-proportional changes in cardiac parameters. Bortezomib has been shown to distribute to most tissues in the body, including the myocardium. In a repeated dosing toxicity study in the monkey, myocardial hemorrhage, inflammation, and necrosis were also observed. Chronic Administration: In animal studies at a dose and schedule similar to that recommended for patients (twice weekly dosing for 2 weeks followed by 1-week rest), toxicities observed included severe anemia and thrombocytopenia, and gastrointestinal, neurological and lymphoid system toxicities. Neurotoxic effects of bortezomib in animal studies included axonal swelling and degeneration in peripheral nerves, dorsal spinal roots, and tracts of the spinal cord. Additionally, multifocal hemorrhage and necrosis in the brain, eye, and heart were observed.
Carcinogenesis And Mutagenesis And Impairment Of Fertility
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenicity studies have not been conducted with bortezomib. Bortezomib showed clastogenic activity (structural chromosomal aberrations) in the in vitro chromosomal aberration assay using Chinese hamster ovary cells. Bortezomib was not genotoxic when tested in the in vitro mutagenicity assay (Ames test) and in vivo micronucleus assay in mice. Fertility studies with bortezomib were not performed but evaluation of reproductive tissues has been performed in the general toxicity studies. In the 6-month rat toxicity study, degenerative effects in the ovary were observed at doses ≥ 0.3 mg/m 2 (one-fourth of the recommended clinical dose), and degenerative changes in the testes occurred at 1.2 mg/m 2 .
Nonclinical Toxicology
13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenicity studies have not been conducted with bortezomib. Bortezomib showed clastogenic activity (structural chromosomal aberrations) in the in vitro chromosomal aberration assay using Chinese hamster ovary cells. Bortezomib was not genotoxic when tested in the in vitro mutagenicity assay (Ames test) and in vivo micronucleus assay in mice. Fertility studies with bortezomib were not performed but evaluation of reproductive tissues has been performed in the general toxicity studies. In the 6-month rat toxicity study, degenerative effects in the ovary were observed at doses ≥ 0.3 mg/m 2 (one-fourth of the recommended clinical dose), and degenerative changes in the testes occurred at 1.2 mg/m 2 . 13.2 Animal Toxicology and/or Pharmacology Cardiovascular Toxicity: Studies in monkeys showed that administration of dosages approximately twice the recommended clinical dose resulted in heart rate elevations, followed by profound progressive hypotension, bradycardia, and death 12 to 14 hours post dose. Doses ≥ 1.2 mg/m 2 induced dose-proportional changes in cardiac parameters. Bortezomib has been shown to distribute to most tissues in the body, including the myocardium. In a repeated dosing toxicity study in the monkey, myocardial hemorrhage, inflammation, and necrosis were also observed. Chronic Administration: In animal studies at a dose and schedule similar to that recommended for patients (twice weekly dosing for 2 weeks followed by 1-week rest), toxicities observed included severe anemia and thrombocytopenia, and gastrointestinal, neurological and lymphoid system toxicities. Neurotoxic effects of bortezomib in animal studies included axonal swelling and degeneration in peripheral nerves, dorsal spinal roots, and tracts of the spinal cord. Additionally, multifocal hemorrhage and necrosis in the brain, eye, and heart were observed.
Application Number
NDA205004
Brand Name
Bortezomib
Generic Name
Bortezomib
Product Ndc
63323-721
Product Type
HUMAN PRESCRIPTION DRUG
Route
INTRAVENOUS
Package Label Principal Display Panel
Principal Display Panel - Bortezomib For Injection Vial Label NDC 63323-721-10 761210 BORTEZOMIB FOR INJECTION 3.5 mg per vial FOR INTRAVENOUS USE ONLY Single-Dose Vial. Discard Unused Portion. Rx only Principal Display Panel - Bortezomib For Injection Vial Label
Recent Major Changes
Dosage and Administration ( 2.1 , 2.4 , 2.5 ) 9/2021 Warnings and Precautions, Thrombotic Microangiopathy ( 5.10 ) 9/2021
Recent Major Changes Table
Dosage and Administration ( | 9/2021 |
Warnings and Precautions, Thrombotic Microangiopathy ( | 9/2021 |
Information For Patients
17 PATIENT COUNSELING INFORMATION Discuss the following with patients prior to treatment with Bortezomib for Injection: Peripheral Neuropathy: Advise patients to report the development or worsening of sensory and motor peripheral neuropathy to their healthcare provider [see Warnings and Precautions ( 5.1 )]. Hypotension: Advise patients to drink adequate fluids to avoid dehydration and to report symptoms of hypotension to their healthcare provider [see Warnings and Precautions ( 5.2 )]. Instruct patients to seek medical advice if they experience symptoms of dizziness, light headedness or fainting spells, or muscle cramps. Cardiac Toxicity: Advise patients to report signs or symptoms of heart failure to their healthcare provider [see Warnings and Precautions ( 5.3 )] . Pulmonary Toxicity: Advise patients to report symptoms of ARDS, pulmonary hypertension, pneumonitis, and pneumonia immediately to their healthcare provider [see Warnings and Precautions ( 5.4 )] . Posterior Reversible Encephalopathy Syndrome (PRES): Advise patients to seek immediate medical attention for signs or symptoms of PRES [see Warnings and Precautions ( 5.5 )]. Gastrointestinal Toxicity: Advise patients to report symptoms of gastrointestinal toxicity to their healthcare provider and to drink adequate fluids to avoid dehydration. Instruct patients to seek medical advice if they experience symptoms of dizziness, light headedness or fainting spells, or muscle cramps [see Warnings and Precautions ( 5.6 )]. Thrombocytopenia/Neutropenia: Advise patients to report signs or symptoms of bleeding or infection immediately to their healthcare provider [see Warnings and Precautions ( 5.7 )] . Tumor Lysis Syndrome: Advise patients of the risk of tumor lysis syndrome and to drink adequate fluids to avoid dehydration [see Warnings and Precautions ( 5.8 )]. Hepatic Toxicity: Advise patients to report signs or symptoms of hepatic toxicity to their healthcare provider [see Warnings and Precautions ( 5.9 )]. Thrombotic Microangiopathy: Advise patients to seek immediate medical attention if any signs or symptoms of thrombotic microangiopathy occur [see Warnings and Precautions ( 5.10 )]. Ability to Drive or Operate Machinery or Impairment of Mental Ability: Bortezomib for Injection may cause fatigue, dizziness, syncope, orthostatic/postural hypotension. Advise patients not to drive or operate machinery if they experience any of these symptoms [see Warnings and Precautions ( 5.2 , 5.5 )]. Embryo-fetal Toxicity: Advise females of the potential risk to the fetus and to use effective contraception during treatment with Bortezomib for Injection and for seven months following the last dose. Advise male patients with female partners of reproductive potential to use effective contraception during treatment with Bortezomib for Injection and for 4 months following the last dose. Instruct patients to report pregnancy to their physicians immediately if they or their female partner becomes pregnant during treatment or within seven months following last dose [see Warnings and Precautions ( 5.11 )] . Lactation : Advise women not to breastfeeding while receiving Bortezomib for Injection and for 2 months after last dose [see Use in Specific Populations ( 8.2 )] . Concomitant Medications: Advise patients to speak with their physicians about any other medication they are currently taking. Diabetic Patients: Advise patients to check their blood sugar frequently if using an oral antidiabetic medication and to notify their physicians of any changes in blood sugar level. Dermal: Advise patients to contact their physicians if they experience rash, severe injection site reactions [see Dosage and Administration ( 2.7 )] , or skin pain. Discuss with patients the option for antiviral prophylaxis for herpes virus infection [see Adverse Reactions ( 6.1 )] . Other: Instruct patients to contact their physicians if they develop an increase in blood pressure, bleeding, fever, constipation, or decreased appetite. U.S. Patent 8,962,572 Lake Zurich, IL 60047 www.fresenius-kabi.com/us 451289D Principal Display Panel - Bortezomib For Injection Vial Label
Clinical Studies
14 CLINICAL STUDIES 14.1 Multiple Myeloma Randomized, Open-Label Clinical Study in Patients with Previously Untreated Multiple Myeloma: A prospective, international, randomized (1:1), open-label clinical study (NCT00111319) of 682 patients was conducted to determine whether bortezomib administered intravenously (1.3 mg/m 2 ) in combination with melphalan (9 mg/m 2 ) and prednisone (60 mg/m 2 ) resulted in improvement in time to progression (TTP) when compared to melphalan (9 mg/m 2 ) and prednisone (60 mg/m 2 ) in patients with previously untreated multiple myeloma. Treatment was administered for a maximum of 9 cycles (approximately 54 weeks) and was discontinued early for disease progression or unacceptable toxicity. Antiviral prophylaxis was recommended for patients on the bortezomib study arm. The median age of the patients in the study was 71 years (48;91), 50% were male, 88% were Caucasian and the median Karnofsky performance status score for the patients was 80 (60;100). Patients had IgG/IgA/Light chain myeloma in 63%/25%/8% instances, a median hemoglobin of 105 g/L (64;165), and a median platelet count of 221,500/microliter (33,000;587,000). Efficacy results for the trial are presented in Table 11 . At a pre-specified interim analysis (with median follow- up of 16.3 months), the combination of bortezomib, melphalan and prednisone therapy resulted in significantly superior results for time to progression, progression-free survival, overall survival and response rate. Further enrollment was halted, and patients receiving melphalan and prednisone were offered bortezomib in addition. A later, pre-specified analysis of overall survival (with median follow-up of 36.7 months with a hazard ratio of 0.65, 95% CI: 0.51, 0.84) resulted in a statistically significant survival benefit for the bortezomib, melphalan and prednisone treatment arm despite subsequent therapies including bortezomib based regimens. In an updated analysis of overall survival based on 387 deaths (median follow-up 60.1 months), the median overall survival for the bortezomib, melphalan and prednisone treatment arm was 56.4 months and for the melphalan and prednisone treatment arm was 43.1 months, with a hazard ratio of 0.695 (95% CI: 0.57, 0.85). Table 11: Summary of Efficacy Analyses in the Previously Untreated Multiple Myeloma Study Note: All results are based on the analysis performed at a median follow-up duration of 16.3 months except for the overall survival analysis. a Kaplan-Meier estimate b Hazard ratio estimate is based on a Cox proportional-hazard model adjusted for stratification factors: beta 2 - microglobulin, albumin, and region. A hazard ratio less than 1 indicates an advantage for bortezomib, melphalan and prednisone c p-value based on the stratified log-rank test adjusted for stratification factors: beta 2 -microglobulin, albumin, and region d EBMT criteria e p-value for Response Rate (CR + PR) from the Cochran-Mantel-Haenszel chi-square test adjusted for the stratification factors Efficacy Endpoint Bortezomib, Melphalan and Prednisone n=344 Melphalan and Prednisone n=338 Time to Progression Events n (%) 101 (29) 152 (45) Median a (months) 20.7 15.0 (95% CI) (17.6, 24.7) (14.1, 17.9) Hazard ratio b 0.54 (95% CI) (0.42, 0.70) p-value c 0.000002 Progression-free Survival Events n (%) 135 (39) 190 (56) Median a (months) 18.3 14.0 (95% CI) (16.6, 21.7) (11.1, 15.0) Hazard ratio b 0.61 (95% CI) (0.49, 0.76) p-value c 0.00001 Response Rate CR d n (%) 102 (30) 12 (4) PR d n (%) 136 (40) 103 (30) nCR n (%) 5 (1) 0 CR + PR d n (%) 238 (69) 115 (34) p-value e <10 -10 Overall Survival at median follow up of 36.7 months Events (deaths) n (%) 109 (32) 148 (44) Median a (months) Not Reached 43.1 (95% CI) (46.2, NR) (34.8, NR) Hazard ratio b 0.65 (95% CI) (0.51, 0.84) p-value c 0.00084 TTP was statistically significantly longer on the bortezomib, melphalan and prednisone arm (see Figure 1 ). (median follow-up 16.3 months) Figure 1: Time to Progression Bortezomib, Melphalan and Prednisone versus Melphalan and Prednisone Overall survival was statistically significantly longer on the bortezomib, melphalan and prednisone arm (see Figure 2 ). (median follow-up 60.1 months) Figure 2: Overall Survival Bortezomib, Melphalan and Prednisone versus Melphalan and Prednisone Randomized, Clinical Study in Relapsed Multiple Myeloma of Bortezomib versus Dexamethasone A prospective phase 3, international, randomized (1:1), stratified, open-label clinical study (NCT00048230) enrolling 669 patients was designed to determine whether bortezomib resulted in improvement in time to progression (TTP) compared to high-dose dexamethasone in patients with progressive multiple myeloma following 1 to 3 prior therapies. Patients considered to be refractory to prior high-dose dexamethasone were excluded as were those with baseline Grade ≥ 2 peripheral neuropathy or platelet counts < 50,000/μL. A total of 627 patients were evaluable for response. Stratification factors were based on the number of lines of prior therapy the patient had previously received (1 previous line versus more than 1 line of therapy), time of progression relative to prior treatment (progression during or within 6 months of stopping their most recent therapy versus relapse > 6 months after receiving their most recent therapy), and screening β 2 -microglobulin levels (≤ 2.5 mg/L versus > 2.5 mg/L). Baseline patient and disease characteristics are summarized in Table 12 . Table 12: Summary of Baseline Patient and Disease Characteristics in the Relapsed Multiple Myeloma Study Patient Characteristics Bortezomib N=333 Dexamethasone N=336 Median age in years (range) 62.0 (33, 84) 61.0 (27, 86) Gender: Male/female 56% / 44% 60% / 40% Race: Caucasian/black/other 90% / 6% / 4% 88% / 7% / 5% Karnofsky performance status score ≤ 70 13% 17% Hemoglobin <100 g/L 32% 28% Platelet count <75 x 10 9 /L 6% 4% Disease Characteristics Type of myeloma (%): IgG/IgA/Light chain 60% / 23% / 12% 59% / 24% / 13% Median beta 2 -microglobulin (mg/L) 3.7 3.6 Median albumin (g/L) 39.0 39.0 Creatinine clearance ≤ 30 mL/min [n (%)] 17 (5%) 11 (3%) Median Duration of Multiple Myeloma Since Diagnosis (Years) 3.5 3.1 Number of Prior Therapeutic Lines of Treatment Median 2 2 1 prior line 40% 35% >1 prior line 60% 65% Previous Therapy Any prior steroids, e.g., dexamethasone, VAD 98% 99% Any prior anthracyclines, e.g., VAD, mitoxantrone 77% 76% Any prior alkylating agents, e.g., MP, VBMCP 91% 92% Any prior thalidomide therapy 48% 50% Vinca alkaloids 74% 72% Prior stem cell transplant/other high-dose therapy 67% 68% Prior experimental or other types of therapy 3% 2% Patients in the bortezomib treatment group were to receive eight 3-week treatment cycles followed by three 5- week treatment cycles of bortezomib. Patients achieving a CR were treated for 4 cycles beyond first evidence of CR. Within each 3-week treatment cycle, bortezomib 1.3 mg/m 2 /dose alone was administered by intravenous bolus twice weekly for 2 weeks on Days 1, 4, 8, and 11 followed by a 10-day rest period (Days 12 to 21). Within each 5-week treatment cycle, bortezomib 1.3 mg/m 2 /dose alone was administered by intravenous bolus once weekly for 4 weeks on Days 1, 8, 15, and 22 followed by a 13-day rest period (Days 23 to 35) [see Dosage and Administration ( 2.2 )] . Patients in the dexamethasone treatment group were to receive four 5-week treatment cycles followed by five 4- week treatment cycles. Within each 5 week treatment cycle, dexamethasone 40 mg/day PO was administered once daily on Days 1 to 4, 9 to 12, and 17 to 20 followed by a 15-day rest period (Days 21 to 35). Within each 4-week treatment cycle, dexamethasone 40 mg/day PO was administered once daily on Days 1 to 4 followed by a 24-day rest period (Days 5 to 28). Patients with documented progressive disease on dexamethasone were offered bortezomib at a standard dose and schedule on a companion study. Following a preplanned interim analysis of time to progression, the dexamethasone arm was halted and all patients randomized to dexamethasone were offered bortezomib, regardless of disease status. In the bortezomib arm, 34% of patients received at least one bortezomib dose in all 8 of the 3-week cycles of therapy, and 13% received at least one dose in all 11 cycles. The average number of bortezomib doses during the study was 22, with a range of 1 to 44. In the dexamethasone arm, 40% of patients received at least one dose in all 4 of the 5-week treatment cycles of therapy, and 6% received at least one dose in all 9 cycles. The time to event analyses and response rates from the relapsed multiple myeloma study are presented in Table 13 . Response and progression were assessed using the European Group for Blood and Marrow Transplantation (EBMT) criteria. Complete response (CR) required < 5% plasma cells in the marrow, 100% reduction in M- protein, and a negative immunofixation test (IF - ). Partial response (PR) requires ≥ 50% reduction in serum myeloma protein and ≥ 90% reduction of urine myeloma protein on at least 2 occasions for a minimum of at least 6 weeks along with stable bone disease and normal calcium. Near complete response (nCR) was defined as meeting all the criteria for complete response including 100% reduction in M-protein by protein electrophoresis; however, M-protein was still detectable by immunofixation (IF + ). Table 13: Summary of Efficacy Analyses in the Relapsed Multiple Myeloma Study a Kaplan-Meier estimate b Hazard ratio is based on Cox proportional-hazard model with the treatment as single independent variable. A hazard ratio less than 1 indicates an advantage for bortezomib c p-value based on the stratified log-rank test including randomization stratification factors d Precise p-value cannot be rendered e Response population includes patients who had measurable disease at baseline and received at least 1 dose of study drug f EBMT criteria; nCR meets all EBMT criteria for CR but has positive IF. Under EBMT criteria nCR is in the PR category g In 2 patients, the IF was unknown h p-value for Response Rate (CR + PR) from the Cochran-Mantel-Haenszel chi-square test adjusted for the stratification factors Efficacy Endpoint All Patients 1 Prior Line of Therapy >1 Prior Line of Therapy Bortezomib Dex Bortezomib Dex Bortezomib Dex n=333 n=336 n=132 n=119 n=200 n=217 Time to Progression Events n (%) 147 (44) 196 (58) 55 (42) 64 (54) 92 (46) 132 (61) Median a (95% CI) 6.2 mo (4.9, 6.9) 3.5 mo (2.9, 4.2) 7.0 mo (6.2, 8.8) 5.6 mo (3.4, 6.3) 4.9 mo (4.2, 6.3) 2.9 mo (2.8, 3.5) Hazard ratio b (95% CI) 0.55 (0.44, 0.69) 0.55 (0.38, 0.81) 0.54 (0.41, 0.72) p-value c <0.0001 0.0019 <0.0001 Overall Survival Events (deaths) n (%) 51 (15) 84 (25) 12 (9) 24 (20) 39 (20) 60 (28) Hazard ratio b (95% CI) 0.57 (0.40, 0.81) 0.39 (0.19, 0.81) 0.65 (0.43, 0.97) p-value c,d <0.05 <0.05 <0.05 Response Rate Population e n=627 n=315 n=312 n=128 n=110 n=187 n=202 CR f n (%) 20 (6) 2 (<1) 8 (6) 2 (2) 12 (6) 0 (0) PR f n(%) 101 (32) 54 (17) 49 (38) 27 (25) 52 (28) 27 (13) nCR f,g n(%) 21 (7) 3 (<1) 8 (6) 2 (2) 13 (7) 1 (<1) CR + PR f n (%) 121 (38) 56 (18) 57 (45) 29 (26) 64 (34) 27 (13) p-value h <0.0001 0.0035 <0.0001 TTP was statistically significantly longer on the bortezomib arm (see Figure 3 ). Figure 3: Time to Progression Bortezomib versus Dexamethasone (relapsed multiple myeloma study) As shown in Figure 4 bortezomib had a significant survival advantage relative to dexamethasone (p < 0.05). The median follow-up was 8.3 months. Figure 4: Overall Survival Bortezomib versus Dexamethasone (relapsed multiple myeloma study) For the 121 patients achieving a response (CR or PR) on the bortezomib arm, the median duration was 8.0 months (95% CI: 6.9, 11.5 months) compared to 5.6 months (95% CI: 4.8, 9.2 months) for the 56 responders on the dexamethasone arm. The response rate was significantly higher on the bortezomib arm regardless of β 2 -microglobulin levels at baseline. A Randomized Phase 2 Dose-Response Study in Relapsed Multiple Myeloma An open-label, multicenter study randomized 54 patients with multiple myeloma who had progressed or relapsed on or after front-line therapy to receive bortezomib 1 mg/m 2 or 1.3 mg/m 2 intravenous bolus twice weekly for 2 weeks on Days 1, 4, 8, and 11 followed by a 10-day rest period (Days 12 to 21). The median duration of time between diagnosis of multiple myeloma and first dose of bortezomib on this trial was 2 years, and patients had received a median of 1 prior line of treatment (median of 3 prior therapies). A single complete response was seen at each dose. The overall response rates (CR + PR) were 30% (8/27) at 1 mg/m 2 and 38% (10/26) at 1.3 mg/m 2 . A Phase 2 Open-Label Extension Study in Relapsed Multiple Myeloma Patients from the two phase 2 studies, who in the investigators' opinion would experience additional clinical benefit, continued to receive bortezomib beyond 8 cycles on an extension study. Sixty-three (63) patients from the phase 2 multiple myeloma studies were enrolled and received a median of 7 additional cycles of bortezomib therapy for a total median of 14 cycles (range 7 to 32). The overall median dosing intensity was the same in both the parent protocol and extension study. Sixty-seven percent (67%) of patients initiated the extension study at the same or higher dose intensity at which they completed the parent protocol, and 89% of patients maintained the standard 3-week dosing schedule during the extension study. No new cumulative or new long- term toxicities were observed with prolonged bortezomib treatment [see Adverse Reactions ( 6.1 )] . A Single-Arm Trial of Retreatment in Relapsed Multiple Myeloma A single arm, open-label trial (NCT00431769) was conducted to determine the efficacy and safety of retreatment with bortezomib. One hundred and thirty patients (≥ 18 years of age) with multiple myeloma who previously had at least partial response on a bortezomib-containing regimen (median of two prior lines of therapy [range 1 to 7]) were retreated upon progression with bortezomib administered intravenously. Patients were excluded from trial participation if they had peripheral neuropathy or neuropathic pain of Grade ≥ 2. At least six months after prior bortezomib therapy, bortezomib was restarted at the last tolerated dose of 1.3 mg/m 2 (n=93) or ≤ 1 mg/m 2 (n=37) and given on Days 1, 4, 8 and 11 every three weeks for maximum of eight cycles either as single agent or in combination with dexamethasone in accordance with the standard of care. Dexamethasone was administered in combination with bortezomib to 83 patients in Cycle 1 with an additional 11 patients receiving dexamethasone during the course of bortezomib retreatment cycles. The primary endpoint was best confirmed response to retreatment as assessed by European Group for Blood and Marrow Transplantation (EBMT) criteria. Fifty of the 130 patients achieved a best confirmed response of Partial Response or better for an overall response rate of 38.5% (95% CI: 30.1, 47.4). One patient achieved a Complete Response and 49 achieved Partial Response. In the 50 responding patients, the median duration of response was 6.5 months and the range was 0.6 to 19.3 months. Figure 1 Figure 2 Figure 3 Figure 4 14.2 Mantle Cell Lymphoma A Phase 2 Single-arm Clinical Study in Relapsed Mantle Cell Lymphoma After Prior Therapy The safety and efficacy of bortezomib in relapsed or refractory mantle cell lymphoma were evaluated in an open-label, single-arm, multicenter study (NCT00063713) of 155 patients with progressive disease who had received at least 1 prior therapy. The median age of the patients was 65 years (42, 89), 81% were male, and 92% were Caucasian. Of the total, 75% had one or more extra-nodal sites of disease, and 77% were stage 4. In 91% of the patients, prior therapy included all of the following: an anthracycline or mitoxantrone, cyclophosphamide, and rituximab. A total of thirty seven percent (37%) of patients were refractory to their last prior therapy. An intravenous bolus injection of bortezomib 1.3 mg/m 2 /dose was administered twice weekly for 2 weeks on Days 1, 4, 8, and 11 followed by a 10-day rest period (Days 12 to 21) for a maximum of 17 treatment cycles. Patients achieving a CR or CRu were treated for 4 cycles beyond first evidence of CR or CRu. The study employed dose modifications for toxicity [see Dosage and Administration ( 2.4 , 2.5 )] . Responses to bortezomib are shown in Table 14 . Response rates to bortezomib were determined according to the International Workshop Response Criteria (IWRC) based on independent radiologic review of CT scans. The median number of cycles administered across all patients was 4; in responding patients the median number of cycles was 8. The median time to response was 40 days (range 31 to 204 days). The median duration of follow-up was more than 13 months. Table 14: Response Outcomes in a Phase 2 Relapsed Mantle Cell Lymphoma Study Response Analyses (N=155) N (%) 95% CI Overall Response Rate (IWRC) (CR + CRu + PR) 48 (31) (24, 39) Complete Response (CR + CRu) 12 (8) (4, 13) CR 10 (6) (3, 12) CRu 2 (1) (0, 5) Partial Response (PR) 36 (23) (17, 31) Duration of Response Median 95% CI CR + CRu + PR (N=48) 9.3 months (5.4, 13.8) CR + CRu (N=12) 15.4 months (13.4, 15.4) PR (N=36) 6.1 months (4.2, 9.3)
Clinical Studies Table
Note: All results are based on the analysis performed at a median follow-up duration of 16.3 months except for the overall survival analysis. | ||
a Kaplan-Meier estimate | ||
b Hazard ratio estimate is based on a Cox proportional-hazard model adjusted for stratification factors: beta2- microglobulin, albumin, and region. A hazard ratio less than 1 indicates an advantage for bortezomib, melphalan and prednisone | ||
c p-value based on the stratified log-rank test adjusted for stratification factors: beta2-microglobulin, albumin, and region | ||
d EBMT criteria | ||
e p-value for Response Rate (CR + PR) from the Cochran-Mantel-Haenszel chi-square test adjusted for the stratification factors | ||
Efficacy Endpoint | Bortezomib, Melphalan and Prednisone n=344 | Melphalan and Prednisone n=338 |
Time to Progression | ||
Events n (%) | 101 (29) | 152 (45) |
Mediana (months) | 20.7 | 15.0 |
(95% CI) | (17.6, 24.7) | (14.1, 17.9) |
Hazard ratiob | 0.54 | |
(95% CI) | (0.42, 0.70) | |
p-valuec | 0.000002 | |
Progression-free Survival | ||
Events n (%) | 135 (39) | 190 (56) |
Mediana (months) | 18.3 | 14.0 |
(95% CI) | (16.6, 21.7) | (11.1, 15.0) |
Hazard ratiob | 0.61 | |
(95% CI) | (0.49, 0.76) | |
p-valuec | 0.00001 | |
Response Rate | ||
CRd n (%) | 102 (30) | 12 (4) |
PRd n (%) | 136 (40) | 103 (30) |
nCR n (%) | 5 (1) | 0 |
CR + PRd n (%) | 238 (69) | 115 (34) |
p-valuee | <10-10 | |
Overall Survival at median follow up of 36.7 months | ||
Events (deaths) n (%) | 109 (32) | 148 (44) |
Mediana (months) | Not Reached | 43.1 |
(95% CI) | (46.2, NR) | (34.8, NR) |
Hazard ratiob | 0.65 | |
(95% CI) | (0.51, 0.84) | |
p-valuec | 0.00084 |
References
15 REFERENCES 1. “OSHA Hazardous Drugs” (refer to antineoplastic weblinks including OSHA Technical Manual). OSHA. http://www.osha.gov/SLTC/hazardousdrugs/index.html
Geriatric Use
8.5 Geriatric Use Of the 669 patients enrolled in the relapsed multiple myeloma study, 245 (37%) were 65 years of age or older: 125 (38%) on the bortezomib arm and 120 (36%) on the dexamethasone arm. Median time to progression and median duration of response for patients ≥ 65 were longer on bortezomib compared to dexamethasone [5.5 mo versus 4.3 mo, and 8.0 mo versus 4.9 mo, respectively]. On the bortezomib arm, 40% (n=46) of evaluable patients aged ≥ 65 experienced response (CR+PR) versus 18% (n=21) on the dexamethasone arm. The incidence of Grade 3 and 4 events was 64%, 78% and 75% for bortezomib patients ≤ 50, 51 to 64 and ≥ 65 years old, respectively [see Adverse Reactions ( 6.1 ); Clinical Studies ( 14.1 )] . No overall differences in safety or effectiveness were observed between patients ≥ age 65 and younger patients receiving bortezomib; but greater sensitivity of some older individuals cannot be ruled out.
Pediatric Use
8.4 Pediatric Use Safety and effectiveness have not been established in pediatric patients. The activity and safety of bortezomib in combination with intensive reinduction chemotherapy was evaluated in pediatric and young adult patients with lymphoid malignancies (pre-B cell ALL 77%, 16% with T-cell ALL, and 7% T-cell lymphoblastic lymphoma (LL)), all of whom relapsed within 36 months of initial diagnosis in a single-arm multicenter, non-randomized cooperative group trial. An effective reinduction multiagent chemotherapy regimen was administered in three blocks. Block 1 included vincristine, prednisone, doxorubicin and pegaspargase; Block 2 included cyclophosphamide, etoposide and methotrexate; Block 3 included high dose cytosine arabinoside and asparaginase. Bortezomib was administered at a dose of 1.3 mg/m 2 as a bolus intravenous injection on Days 1, 4, 8, and 11 of Block 1 and Days 1, 4, and 8 of Block 2. There were 140 patients with ALL or LL enrolled and evaluated for safety. The median age was ten years (range 1 to 26), 57% were male, 70% were white, 14% were black, 4% were Asian, 2% were American Indian/ Alaska Native, 1% were Pacific Islander. The activity was evaluated in a pre-specified subset of the first 60 evaluable patients enrolled on the study with pre-B ALL ≤ 21 years and relapsed < 36 months from diagnosis. The complete remission (CR) rate at day 36 was compared to that in a historical control set of patients who had received the identical backbone therapy without bortezomib. There was no evidence that the addition of bortezomib had any impact on the CR rate. No new safety concerns were observed when bortezomib was added to a chemotherapy backbone regimen as compared with a historical control group in which the backbone regimen was given without bortezomib. The BSA-normalized clearance of bortezomib in pediatric patients was similar to that observed in adults.
Pregnancy
8.1 Pregnancy Risk Summary Based on its mechanism of action [see Clinical Pharmacology ( 12.1 )] and findings in animals, Bortezomib for Injection can cause fetal harm when administered to a pregnant woman. There are no studies with the use of bortezomib in pregnant women to inform drug-associated risks. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose [see Data ] . Advise pregnant women of the potential risk to the fetus. Adverse outcomes in pregnancy occur regardless of the health of the mother or the use of medications. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Data Animal Data Bortezomib was not teratogenic in nonclinical developmental toxicity studies in rats and rabbits at the highest dose tested (0.075 mg/kg; 0.5 mg/m 2 in the rat and 0.05 mg/kg; 0.6 mg/m 2 in the rabbit) when administered during organogenesis. These dosages are approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose (approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area). Pregnant rabbits given bortezomib during organogenesis at a dose of 0.05 mg/kg (0.6 mg/m 2 ) experienced significant post-implantation loss and decreased number of live fetuses. Live fetuses from these litters also showed significant decreases in fetal weight.
Use In Specific Populations
8 USE IN SPECIFIC POPULATIONS Patients with diabetes may require close monitoring of blood glucose and adjustment of anti-diabetic medication. ( 8.8 ) 8.1 Pregnancy Risk Summary Based on its mechanism of action [see Clinical Pharmacology ( 12.1 )] and findings in animals, Bortezomib for Injection can cause fetal harm when administered to a pregnant woman. There are no studies with the use of bortezomib in pregnant women to inform drug-associated risks. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose [see Data ] . Advise pregnant women of the potential risk to the fetus. Adverse outcomes in pregnancy occur regardless of the health of the mother or the use of medications. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Data Animal Data Bortezomib was not teratogenic in nonclinical developmental toxicity studies in rats and rabbits at the highest dose tested (0.075 mg/kg; 0.5 mg/m 2 in the rat and 0.05 mg/kg; 0.6 mg/m 2 in the rabbit) when administered during organogenesis. These dosages are approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose (approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area). Pregnant rabbits given bortezomib during organogenesis at a dose of 0.05 mg/kg (0.6 mg/m 2 ) experienced significant post-implantation loss and decreased number of live fetuses. Live fetuses from these litters also showed significant decreases in fetal weight. 8.2 Lactation Risk Summary There are no data on the presence of bortezomib or its metabolites in human milk, the effects of the drug on the breastfed child, or the effects of the drug on milk production. Because many drugs are excreted in human milk and because the potential for serious adverse reactions in a breastfed child from Bortezomib for Injection is unknown, advise nursing women not to breastfeed during treatment with Bortezomib for Injection and for 2 months after treatment. 8.3 Females and Males of Reproductive Potential Based on its mechanism of action and findings in animals, Bortezomib for Injection can cause fetal harm when administered to a pregnant woman [see Use in Specific Populations ( 8.1 )]. Pregnancy Testing Conduct pregnancy testing in females of reproductive potential prior to initiating Bortezomib for Injection treatment. Contraception Females Advise females of reproductive potential to use effective contraception during treatment with Bortezomib for Injection and for 7 months after the last dose. Males Males with female partners of reproductive potential should use effective contraception during treatment with Bortezomib for Injection and for 4 months after the last dose. Infertility Based on the mechanism of action and findings in animals, Bortezomib for Injection may have an effect on either male or female fertility [see Nonclinical Toxicology ( 13.1 )] . 8.4 Pediatric Use Safety and effectiveness have not been established in pediatric patients. The activity and safety of bortezomib in combination with intensive reinduction chemotherapy was evaluated in pediatric and young adult patients with lymphoid malignancies (pre-B cell ALL 77%, 16% with T-cell ALL, and 7% T-cell lymphoblastic lymphoma (LL)), all of whom relapsed within 36 months of initial diagnosis in a single-arm multicenter, non-randomized cooperative group trial. An effective reinduction multiagent chemotherapy regimen was administered in three blocks. Block 1 included vincristine, prednisone, doxorubicin and pegaspargase; Block 2 included cyclophosphamide, etoposide and methotrexate; Block 3 included high dose cytosine arabinoside and asparaginase. Bortezomib was administered at a dose of 1.3 mg/m 2 as a bolus intravenous injection on Days 1, 4, 8, and 11 of Block 1 and Days 1, 4, and 8 of Block 2. There were 140 patients with ALL or LL enrolled and evaluated for safety. The median age was ten years (range 1 to 26), 57% were male, 70% were white, 14% were black, 4% were Asian, 2% were American Indian/ Alaska Native, 1% were Pacific Islander. The activity was evaluated in a pre-specified subset of the first 60 evaluable patients enrolled on the study with pre-B ALL ≤ 21 years and relapsed < 36 months from diagnosis. The complete remission (CR) rate at day 36 was compared to that in a historical control set of patients who had received the identical backbone therapy without bortezomib. There was no evidence that the addition of bortezomib had any impact on the CR rate. No new safety concerns were observed when bortezomib was added to a chemotherapy backbone regimen as compared with a historical control group in which the backbone regimen was given without bortezomib. The BSA-normalized clearance of bortezomib in pediatric patients was similar to that observed in adults. 8.5 Geriatric Use Of the 669 patients enrolled in the relapsed multiple myeloma study, 245 (37%) were 65 years of age or older: 125 (38%) on the bortezomib arm and 120 (36%) on the dexamethasone arm. Median time to progression and median duration of response for patients ≥ 65 were longer on bortezomib compared to dexamethasone [5.5 mo versus 4.3 mo, and 8.0 mo versus 4.9 mo, respectively]. On the bortezomib arm, 40% (n=46) of evaluable patients aged ≥ 65 experienced response (CR+PR) versus 18% (n=21) on the dexamethasone arm. The incidence of Grade 3 and 4 events was 64%, 78% and 75% for bortezomib patients ≤ 50, 51 to 64 and ≥ 65 years old, respectively [see Adverse Reactions ( 6.1 ); Clinical Studies ( 14.1 )] . No overall differences in safety or effectiveness were observed between patients ≥ age 65 and younger patients receiving bortezomib; but greater sensitivity of some older individuals cannot be ruled out. 8.6 Renal Impairment No starting dosage adjustment of Bortezomib for Injection is recommended for patients with renal impairment. In patients requiring dialysis, Bortezomib for Injection should be administered after the dialysis procedure [see Clinical Pharmacology ( 12.3 )] . 8.7 Hepatic Impairment No starting dosage adjustment of Bortezomib for Injection is recommended for patients with mild hepatic impairment (total bilirubin ≤ 1x ULN and AST > ULN, or total bilirubin > 1 to 1.5x ULN and any AST). The exposure of bortezomib is increased in patients with moderate (total bilirubin ≥ 1.5 to 3x ULN and any AST) and severe (total bilirubin > 3x ULN and any AST) hepatic impairment. Reduce the starting dose in patients with moderate or severe hepatic impairment [see Dosage and Administration ( 2.6 ), Clinical Pharmacology ( 12.3 )] . 8.8 Patients with Diabetes During clinical trials, hypoglycemia and hyperglycemia were reported in diabetic patients receiving oral hypoglycemics. Patients on oral antidiabetic agents receiving Bortezomib for Injection treatment may require close monitoring of their blood glucose levels and adjustment of the dose of their antidiabetic medication.
How Supplied
16 HOW SUPPLIED/STORAGE AND HANDLING Bortezomib for Injection is supplied in a 10 mL vial containing 3.5 mg of bortezomib as a white to off-white cake or powder in a single-dose vial for reconstitution (after reconstitution the solution is clear and colorless). Product No. NDC No. Strength 761210 63323-721-10 3.5 mg 10 mL single-dose vial, packaged individually. Unopened vials may be stored at 20°C to 25ºC (68°F to 77ºF); excursions permitted from 15°C to 30°C (59°F to 86°F) [see USP Controlled Room Temperature]. Retain in original package to protect from light. The vial stopper is not made with natural rubber latex. Follow guidelines for handling and disposal for hazardous drugs, including the use of gloves and other protective clothing to prevent skin contact 1 .
How Supplied Table
Product No. | NDC No. | Strength | |
761210 | 63323-721-10 | 3.5 mg | 10 mL single-dose vial, packaged individually. |
Learning Zones
The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.
Disclaimer
The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).
Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.
Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.