This site is intended for healthcare professionals
EMC Drug Feed
Drug information

POM
Read time: 1 mins
Last updated: 14 Apr 2021

Summary of product characteristics


1. Name of the medicinal product

Curatil prolonged release 200 mg tablets


2. Qualitative and quantitative composition

Each coated tablet contains 200 mg carbamazepine.

Excipient with known effect

Each prolonged-release tablet contains 30mg lactose (as lactose monohydrate)

For the full list of excipients, see section 6.1.


3. Pharmaceutical form

Prolonged release tablet

White to off-white, round, biconvex tablets, approximately 9 mm diameter, debossed with “297” on one side and “HP” on the other side.


4.1. Therapeutic indications

Epilepsy – generalised tonic-clonic and partial seizures. Curatil is indicated in newly diagnosed patients with epilepsy and in those patients who are uncontrolled or unable to tolerate their current anti-convulsant therapy.

Note: Carbamazepine is not usually effective in absences (petit mal) and myoclonic seizures.

The paroxysmal pain of trigeminal neuralgia.

For the prophylaxis of manic-depressive psychoses in patients unresponsive to lithium therapy.


4.2. Posology and method of administration

Before deciding to initiate treatment, patients of Han Chinese and Thai origin should whenever possible be screened for HLA-B*1502 as this allele strongly predicts the risk of severe carbamazepine-associated Stevens-Johnson syndrome (See information on genetic testings and cutaneous reactions in section 4.4).

Posology

Epilepsy:

The dose of carbamazepine should be adjusted to the needs of the individual patient to achieve adequate control of seizures. Determination of plasma levels may help in establishing the optimum dosage. In the treatment of epilepsy, the dose of carbamazepine usually requires total plasma-carbamazepine concentrations of about 4 to 12 micrograms/mL (17 to 50 micromoles/litre) (see warnings and precautions).

Adults: It is advised that with all formulations of carbamazepine, a gradually increasing dosage scheme is used and this should be adjusted to suit the needs of the individual patient.

Special population

Elderly population (65 years or above): Due to the potential for drug interactions, the dosage of carbamazepine should be selected with caution in elderly patients (65 years of above).

Children and adolescents: It is advised that with all formulations of carbamazepine, a gradually increasing dosage scheme is used and this should be adjusted to suit the needs of the individual patient.

Usual dosage 10-20mg/kg bodyweight daily in several divided doses.

Age

up to 5 years:

Curatil Prolonged Release Tablets are not recommended

5-10 years:

400-600mg daily

10-15 years:

600-1000mg

>15 years of age:

800 to 1200mg daily (same as adult dose)

Maximum recommended dose

Up to 6 years of age: 35mg/kg/day

6-15 years of age: 1000mg/day

>15 years of age: 1200mg/day (same as adult dose).

Wherever possible, Curatil should be used as the sole drug anti-epileptic agent but if used in polytherapy, the same incremental dosage pattern is advised.

When Curatil is added to existing antiepileptic therapy, this should be done gradually while maintaining or, if necessary, adapting the dosage of the other antiepileptic(s) (see 4.5 Interaction with other medicinal products and other forms of interaction).

Trigeminal neuralgia:

Slowly raise the initial dosage of 200-400mg daily until freedom from pain is achieved (normally at 200mg 3-4 times daily). In the majority of patients, a dosage of 200mg 3 or 4 times a day is sufficient to maintain a pain free state. In some instances, doses of 1600mg carbamazepine daily may be needed. However, once the pain is in remission, the dosage should be gradually reduced to the lowest possible maintenance level. Maximum recommended dose is 1200mg/day. When pain relief has been obtained, attempts should be made to gradually discontinue therapy, until another attack occurs.

Special population

Dosage in Trigeminal neuralgia

Due to drug interactions and different antiepileptic drug pharmacokinetics, the dosage of carbamazepine should be selected with caution in elderly patients.

In elderly patients, an initial dose of 100mg twice daily is recommended. The initial dosage of 100mg twice daily should be slowly raised daily until freedom from pain is achieved (normally at 200mg 3 to 4 times daily). The dosage should then be gradually reduced to the lowest possible maintenance level. Maximum recommended dose is 1200mg/day. When pain relief has been obtained, attempts should be made to gradually discontinue therapy, until another attack occurs.

For the prophylaxis of manic depressive psychosis in patients unresponsive to lithium therapy:

Initial starting dose of 400mg daily, in divided doses, increasing gradually until symptoms are controlled or a total of 1600mg given in divided doses is reached. The usual dosage range is 400-600mg daily, given in divided doses.

Special populations

Renal impairment / Hepatic impairment

No data are available on the pharmacokinetics of carbamazepine in patients with impaired hepatic or renal function.

Method of administration

Curatil is given orally, generally in the same total daily dose as conventional carbamazepine dosage forms but usually in two divided doses. In a few patients when changing from other oral dosage forms of carbamazepine to Curatil the total daily dose may need to be increased, particularly when it is used in polytherapy. When starting treatment with Curatil in monotherapy, 100-200mg once or twice daily is recommended. This may be followed by a slow increase in dosage until the best response is obtained, often 800-1200mg daily. In some instances, 1600mg or even 2000mg daily may be necessary.

The tablets should be taken during after or between a meal with a drink of water. The prolonged-release tablets should be swallowed whole and not chewed or crushed.


4.3. Contraindications

- Known hypersensitivity to carbamazepine or structurally related drugs (e.g. tricyclic antidepressants) or any other component of the formulation.

- Patients with atrioventricular block, a history of bone marrow depression or a history of hepatic porphyrias (e.g. acute intermittent porphyria, variegate porphyria, porphyria cutanea tarda).

- The use of carbamazepine is contraindicated in combination with monoamine oxidase inhibitors (MAOIs) (see section 4.5 Interaction with other medicinal products and other forms of interaction


4.4. Special warnings and precautions for use

Warnings

Agranulocytosis and aplastic anaemia have been associated with carbamazepine; however, due to the very low incidence of these conditions, meaningful risk estimates for carbamazepine are difficult to obtain. The overall risk in the general untreated population has been estimated at 4.7 persons per million per year for agranulocytosis and 2.0 persons per million per year for aplastic anaemia.

Decreased platelet or white blood cell counts occur occasionally to frequently in association with the use of carbamazepine. Nonetheless, complete pre-treatment blood counts, including platelets and possibly reticulocytes and serum iron, should be obtained as a baseline, and periodically thereafter.

Patients and their relatives should be made aware of early toxic signs and symptoms indicative of a potential haematological problem, as well as symptoms of dermatological or hepatic reactions. If reactions such as fever, sore throat, rash, ulcers in the mouth, easy bruising, petechial or purpuric haemorrhage appear, the patient should be advised to consult his physician immediately.

If the white blood cell or platelet count is definitely low or decreased during treatment, the patient and the complete blood count should be closely monitored (see Section 4.8 Undesirable Effects). However, treatment with carbamazepine should be discontinued if the patient develops leucopenia which is severe, progressive or accompanied by clinical manifestations, e.g. fever or sore throat. Carbamazepine should also be discontinued if any evidence of significant bone marrow depression appears.

Liver function tests should also be performed before commencing treatment and periodically thereafter, particularly in patients with a history of liver disease and in elderly patients. The drug should be withdrawn immediately in cases of aggravated liver dysfunction or acute liver disease.

Some liver function tests in patients receiving carbamazepine may be found to be abnormal, particularly gamma glutamyl transferase. This is probably due to hepatic enzyme induction. Enzyme induction may also produce modest elevations in alkaline phosphatase. These enhancements of hepatic metabolising capacity are not an indication for the withdrawal of carbamazepine.

Severe hepatic reactions to carbamazepine occur very rarely. The development of signs and symptoms of liver dysfunction or active liver disease should be urgently evaluated and treatment with carbamazepine suspended pending the outcome of the evaluation.

Suicidal ideation and behaviour have been reported in patients treated with anti-epileptic agents in several indications. A meta-analysis of randomised placebo controlled trials of antiepileptic drugs has also shown a small increased risk of suicidal ideation and behaviour. The mechanism of this risk is not known and the available data do not exclude the possibility of an increased risk for carbamazepine.

Therefore, patients should be monitored for signs of suicidal ideation and behaviours and appropriate treatment should be considered. Patients (and caregivers of patients) should be advised to seek medical advice should signs of suicidal ideation or behaviour emerge.

Serious dermatological reactions, including toxic epidermal necrolysis (TEN: also known as Lyell's syndrome) and Stevens Johnson syndrome (SJS) have been reported very rarely with carbamazepine. Patients with serious dermatological reactions may require hospitalization, as these conditions may be life-threatening and may be fatal. Most of the SJS/TEN cases appear in the first few months of treatment with carbamazepine. These reactions are estimated to occur in 1 to 6 per 10,000 new users in countries with mainly Caucasian populations. If signs and symptoms suggestive of severe skin reactions (e.g. SJS, Lyell's syndrome/TEN) appear, carbamazepine should be withdrawn at once and alternative therapy should be considered.

Cutaneous reactions

Serious and sometimes fatal cutaneous reactions including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) have been reported during treatment with carbamazepine. These reactions are estimated to occur in 1-6 per 10 000 new users in countries with mainly Caucasian populations, but the risk in some Asian countries is estimated to be about 10 times higher.

There is growing evidence of the role of different HLA alleles in predisposing patients to immune-mediated adverse reactions (see section 4.2).

HLA-B*1502 allele - in Han Chinese, Thai and other Asian populations

HLA-B*1502 in individuals of Han Chinese and Thai origin has been shown to be strongly associated with the risk of developing Stevens-Johnson syndrome (SJS) when treated with carbamazepine. The prevalence of HLA-B*1502 carrier is about 10% in Han Chinese and Thai populations. Whenever possible, these individuals should be screened for this allele before starting treatment with carbamazepine (see section 4.2). If these individuals test positive, carbamazepine should not be started unless there is no other therapeutic option. Tested patients who are found to be negative for HLA-B*1502 have a low risk of SJS, although the reactions may still very rarely occur.

There are some data that suggest an increased risk of serious carbamazepine-associated TEN/SJS in other Asian populations. Because of the prevalence of this allele in other Asian populations (e.g. above 15% in the Philippines and Malaysia), testing genetically at risk populations for the presence of HLA-B*1502 may be considered.

The prevalence of the HLA-B*1502 allele is negligible in e.g. European descent, African,Hispanic populations sampled, and in Japanese and Koreans (< 1%).

HLA-A*3101 allele - European descent and Japanese populations

There are some data that suggest HLA-A*3101 is associated with an increased risk of carbamazepine induced cutaneous adverse drug reactions including SJS, TEN, Drug rash with eosinophilia (DRESS), or less severe acute generalized exanthematous pustulosis (AGEP) and maculopapular rash (see section 4.8) in people of European descent and the Japanese.

The frequency of the HLA-A*3101 allele varies widely between ethnic populations. HLA-A* 3101 allele has a prevalence of 2 to 5% in European populations and about 10% in Japanese population.

The presence of HLA-A*3101 allele may increase the risk for carbamazepine induced cutaneous reactions (mostly less severe) from 5.0% in general population to 26.0% among subjects of Northern European ancestry, whereas its absence may reduce the risk from 5.0% to 3.8%.

There are insufficient data supporting a recommendation for HLA-A*3101 screening before starting carbamazepine treatment.

If patients of European descent or Japanese origin are known to be positive for HLA-A*3101 allele, the use of carbamazepine may be considered if the benefits are thought to exceed risks.

Other dermatologic reactions

Mild skin reactions e.g. isolated macular or maculopapular exanthema, can also occur and are mostly transient and not hazardous. They usually disappear within a few days or weeks, either during the continued course of treatment or following a decrease in dosage. However, since it may be difficult to differentiate the early signs of more serious skin reactions from mild transient reactions, the patient should be kept under close surveillance with consideration given to immediately withdrawing the drug should the reaction worsen with continued use.

The HLA-B*1502 allele has not been found to predict risk of less severe adverse cutaneous reactions from carbamazepine, such as anticonvulsant hypersensitivity syndrome or nonserious rash (maculopapular eruption).

Hypersensitivity

Carbamazepine may trigger hypersensitivity reactions, including Drug Rash with Eosinophilia and Systemic Symptoms (DRESS), reactivation of HHV6 associated with DRESS, a delayed multi-organ hypersensitivity disorder with fever, rash, vasculitis, lymphadenopathy, pseudo lymphoma, arthralgia, leukopenia, eosinophilia, hepato-splenomegaly, abnormal liver function tests and vanishing bile duct syndrome (destruction and disappearance of the intrahepatic bile ducts), that may occur in various combinations. Other organs may also be affected (e.g. lungs, kidneys, pancreas, myocardium, colon) see section 4.8 Undesirable Effects.

In general, if signs and symptoms suggestive of hypersensitivity reactions occur, carbamazepine should be withdrawn immediately.

Patients who have exhibited hypersensitivity reactions to carbamazepine should be informed that 25-30 % of these patients may experience hypersensitivity reactions with oxacarbazepine.

Cross-hypersensitivity can occur between carbamazepine and aromatic antiepileptic drugs (e.g phenytoin, primidone and phenobarbital).

Carbamazepine should be used with caution in patients with mixed seizures which include absences, either typical or atypical. In all these conditions, carbamazepine may exacerbate seizures. In case of exacerbation of seizures, carbamazepine should be discontinued. Moreover, anecdotal evidence suggests that seizure exacerbation may occur in patients with atypical absences.

An increase in seizure frequency may occur during switchover from an oral formulation to suppositories.

Dose reduction and withdrawal effects

Abrupt withdrawal of carbamazepine may precipitate seizures therefore carbamazepine withdrawal should be gradual. If treatment with carbamazepine has to be withdrawn abruptly in a patient with epilepsy, the changeover to another anti-epileptic drug should if necessary be effected under the cover of a suitable drug.

Endocrinological effects

Breakthrough bleeding has been reported in women taking carbamazepine while using hormonal contraceptives. The reliability of hormonal contraceptives may be adversely affected by carbamazepine and women of childbearing potential should be advised to consider using alternative forms of birth control while taking carbamazepine.

Patients taking carbamazepine and requiring hormonal contraception should receive a preparation containing not less than 50μg oestrogen or use of some alternative non-hormonal method of contraception should be considered.

Monitoring of plasma levels

Although correlations between dosages and plasma levels of carbamazepine, and between plasma levels and clinical efficacy or tolerability are rather tenuous, monitoring of the plasma levels may be useful in the following conditions: dramatic increase in seizure frequency/verification of patient compliance; during pregnancy; when treating children or adolescents; in suspected absorption disorders; in suspected toxicity when more than one drug is being used (see 4.5 Interaction with other Medicaments and other forms of Interaction).

Precautions

Carbamazepine should be prescribed only after a critical benefit-risk appraisal and under close monitoring in patients with a history of cardiac, hepatic or renal damage, adverse haematological reactions to other drugs, or interrupted courses of therapy with carbamazepine.

Baseline and periodic complete urinalysis and BUN determinations are recommended.

Hyponatremia

Hyponatremia is known to occur with carbamazepine. In patients with pre-existing renal conditions associated with low sodium or in patients treated concomitantly with sodium-lowering medicinal products (e.g. diuretics, medicinal products associated with inappropriate ADH secretion), serum sodium levels should be measured prior to initiating carbamazepine therapy. Thereafter, serum sodium levels should be measured after approximately two weeks and then at monthly intervals for the first three months during therapy, or according to clinical need. These risk factors may apply especially to elderly patients. If hyponatraemia is observed, water restriction is an important counter-measurement if clinically indicated.

Hypothyroidism

Carbamazepine may reduce serum concentrations of thyroid hormones through enzyme induction requiring an increase in dose of thyroid replacement therapy in patients with hypothyroidism. Hence thyroid function monitoring is suggested to adjust the dosage of thyroid replacement therapy.

Anticholinergic effects

Carbamazepine has shown mild anticholinergic activity; patients with increased intraocular pressure and urinary retention should therefore be closely observed during therapy (see section 4.8).

Psychiatric effects

The possibility of activation of a latent psychosis and, in elderly patients, of confusion or agitation should be borne in mind.

Interactions

Co-administration of inhibitors of CYP3A4 or inhibitors of epoxide hydrolase with carbamazepine can induce adverse reactions (increase of carbamazepine or carbamazepine-10,11 epoxide plasma concentrations respectively). The dosage of carbamazepine should be adjusted accordingly and/or the plasma levels monitored.

Co-administration of CYP3A4 inducers with carbamazepine may decrease carbamazepine plasma concentrations and its therapeutic effect, while discontinuation of a CYP3A4 inducer may increase carbamazepine plasma concentrations. The dosage of carbamazepine may have to be adjusted.

Carbamazepine is a potent inducer of CYP3A4 and other phase I and phase II enzyme systems in the liver, and may therefore reduce plasma concentrations of co-medications mainly metabolized by CYP3A4 by induction of their metabolism. See section 4.5 Interactions.

Female patients of childbearing potential should be warned that the concurrent use of carbamazepine with hormonal contraceptives may render this type of contraceptive ineffective (see sections 4.5 Interactions and 4.6 Pregnancy and lactation). Alternative non-hormonal forms of contraception are recommended when using carbamazepine.

Falls

Carbamazepine treatment has been associated with ataxia, dizziness, somnolence, hypotension, confusional state, sedation (see section 4.8 Undesirable effects) which may lead to falls and, consequently fractures or other injuries. For patients with diseases, conditions, or medications that could exacerbate these effects, complete risk assessment of fall should be considered recurrently for patients on long-term Tegretol treatment.

Interference with serological testing

Carbamazepine may result in false positive perphenazine concentrations in HPLC analysis due to interference.

Carbamazepine and the 10,11-epoxide metabolite may result in false positive tricyclic antidepressant concentration in fluorescence polarized immunoassay method.

Lactose

This medicinal product contains lactose. Patients with rare hereditary problems of galactose intolerance, LAPP lactase deficiency or glucose-galactose malabsorption should not take this medicine


4.5. Interaction with other medicinal products and other forms of interaction

Carbamazepine interacts with many other medicinal products, and caution should always be taken when combining carbamazepine with other medicinal products.

Pharmacokinetic interactions

Cytochrome P450 3A4 (CYP 3A4) is the main enzyme catalysing formation of the active metabolite carbamazepine 10, 11-epoxide. Co-administration of inhibitors of CYP 3A4 may result in increased carbamazepine plasma concentrations which could induce adverse reactions. Co-administration of CYP 3A4 inducers might increase the rate of carbamazepine metabolism, thus leading to potential decreases in the carbamazepine serum level and therapeutic effect.

Similarly, discontinuation of a CYP3A4 inducer may decrease the rate of metabolism of carbamazepine, leading to an increase in carbamazepine plasma levels.

Carbamazepine is a potent inducer of CYP3A4 and other phase I and phase II enzyme systems in the liver, and may therefore reduce plasma concentrations of co-medications mainly metabolized by CYP3A4 by induction of their metabolism.

Human microsomal epoxide hydrolase has been identified as the enzyme responsible for the formation of the 10,11-transdiol derivative from carbamazepine-10,11 epoxide. Coadministration of inhibitors of human microsomal epoxide hydrolase may result in increased carbamazepine-10,11 epoxide plasma concentrations.

Carbamazepine induces many active substance metabolizing enzymes and transporters, e.g. CYP3A, CYP2C8, 9 and 19, CYP2B6, UGTs (glucuronidation) and the transport protein p-glycoprotein (Pgp). Therefore, concomitant treatment with carbamazepine may increase the elimination of a large number of active substances whose metabolism is catalyzed by these enzymes. The plasma levels of such active substances can therefore be reduced with reduced or no effect as a result. Induction of Pgp can lead to lowered plasma levels and reduced distribution of drugs transported by this protein e.g. digoxin, fexofenadine, dabigatran, etexilate and sofosbuvir. The inducing effect of carbamazepine reaches its maximum after about 2 weeks of treatment with carbamazepine and may persist for at least 2 weeks after finishing treatment.

Interactions resulting in a contraindication

The use of carbamazepine is contraindicated in combination with monoamine-oxidase inhibitors (MAOIs); before administering carbamazepine MAOIs should be discontinued for a minimum of 2 weeks, or longer if the clinical situation permits (see contraindications).

Agents that may raise carbamazepine plasma levels:

Since raised plasma carbamazepine levels may result in adverse reactions (e.g. dizziness, drowsiness, ataxia, diplopia), the dosage of carbamazepine should be adjusted accordingly and/or the plasma levels monitored when used concomitantly with the substances described below:

Analgesics, anti-inflammatory drugs: dextropropoxyphene.

Androgens: danazol.

Antibiotics: macrolide antibiotics (e.g. erythromycin, clarithromycin), ciprofloxacine.

Antidepressants: fluoxetine, fluvoxamine, paroxetine, trazodone.

Antiepileptics: vigabatrin.

Antifungals: azoles (e.g. itraconazole, ketoconazole, fluconazole, voriconazole). Alternative anti-convulsants may be recommended in patients treated with voriconazole or itraconazole.

Antihistamines: loratadine.

Antipsychotics: olanzapine.

Antituberculosis: isoniazid.

Antivirals: protease inhibitors for HIV treatment (e.g. ritonavir).

Carbonic anhydrase inhibitors: acetazolamide.

Cardiovascular drugs: diltiazem, verapamil.

Gastrointestinal drugs: possibly cimetidine, omeprazole.

Other interactions: grapefruit juice, nicotinamide (only in high dosage).

Agents that may raise the active metabolite carbamazepine-10,11-epoxide plasma levels:

Since raised plasma carbamazepine-10,11-epoxide levels may result in adverse reactions (e.g. dizziness, drowsiness, ataxia, diplopia), the dosage of carbamazepine should be adjusted accordingly and/or the plasma levels monitored when used concomitantly with the substances described below:

Quetiapine, primidone, progabide, valproic acid, valnoctamide and valpromide.

Agents that may decrease carbamazepine plasma levels:

The dose of carbamazepine may have to be adjusted when used concomitantly with the substances described below:

Antiepileptics: oxcarbazepine, phenobarbital, phenytoin (to avoid phenytoin intoxication and subtherapeutic concentrations of carbamazepine it is recommended to adjust the plasma concentration of phenytoin to 13 micrograms /mL before adding carbamazepine to the treatment) and fosphenytoin, primidone, and, although the data are partly contradictory,possibly also clonazepam.

Antineoplastics: cisplatin or doxorubicin.

Antituberculosis: rifampicin.

Bronchodilatators or anti-asthma drugs: theophylline, aminophylline.

Dermatological drugs: isotretinoin.

Other interactions: herbal preparations containing St John's wort (Hypericum perforatum).

Due to potential interactions during combination therapy of epilepsy, plasma levels should be regularly monitored, and dosage adjusted accordingly as required. Blood assays of their respective plasma levels may vary from one patient to another, and moreover are usually bidirectional.

Serum levels of carbamazepine can be reduced by concomitant use of the herbal preparation St John's wort (Hypericum perforatum). This is due to induction of drug metabolising enzymes, which may persist for at least 2 weeks after cessation of treatment with St. John's wort. For patients taking St John's wort, serum levels of carbamazepine should be monitored and St. John's wort stopped. Carbamazepine levels may increase on stopping St. John's wort. The dose of carbamazepine may need adjusting.

Effect of Carbamazepine on plasma levels of concomitant agents:

Carbamazepine may lower the plasma level, diminish or even abolish the activity of certain medicinal products, due to its inducing effect on metabolising enzymes and the transport porotein P-gp. The dosage of the following drugs may have to be adjusted to clinical requirement:

Analgesics, anti-inflammatory agents: buprenorphine, methadone, paracetamol (long term administration of carbamazepine and paracetamol (acetaminophen) may be associated with hepatotoxicity), tramadol.

Antibiotics: doxycycline, rifabutin.

Anticoagulants: oral anticoagulants (e.g. warfarin, acenocoumarol, rivaroxaban, dabigatran, apixaban and edoxaban).

Antidepressants: bupropion, citalopram, mianserin, sertraline, trazodone, tricyclic antidepressants (e.g. imipramine, amitriptyline, nortriptyline, clomipramine).

Antiemetics: aprepitant

Antiepileptics: clobazam, clonazepam, ethosuximide, lamotrigine, eslicarbazepine, oxcarbazepine, primidone, tiagabine, topiramate, valproic acid, zonisamide. To avoid phenytoin intoxication and subtherapeutic concentrations of carbamazepine it is recommended to adjust the plasma treatment. There have been rare reports of an increase in plasma mephenytoin levels.

Antifungals: itraconazole, voriconazole. Alternative anti-convulsants may be recommended in patients treated with voriconazole or itraconazole.

Antihelmintics: albendazole.

Antineoplastics: imatinib, cyclophosphamide, lapatinib, temsirolimus.

Antipsychotics: clozapine, haloperidol and bromperidol, olanzapine, quetiapine, risperidone, aripiprazole, paliperidone.

Antivirals: protease inhibitors for HIV treatment (e.g. indinavir, ritonavir, saquinavir).

Anxiolytics: alprazolam.

Bronchodilatators or anti-asthma drugs: theophylline.

Contraceptives: hormonal contraceptives (alternative contraceptive methods should be considered).

Cardiovascular medinical products: calcium channel blockers (dihydropyridine group) e.g. felodipine, digoxin, simvastatin, atorvastatin, lovastatin, cerivastatin, ivabradine.

Corticosteroids: corticosteroids (e.g. prednisolone, dexamethasone).

Drugs used in erectile dysfunction: tadalafil.

Immunosuppressants: ciclosporin, everolimus, tacrolimus, sirolimus.

Thyroid agents: levothyroxine.

Other drug interactions: products containing oestrogens and/or progesterones.

Combinations that require specific consideration:

Concomitant use of carbamazepine and levetiracetam has been reported to increase carbamazepine-induced toxicity.

Concomitant use of carbamazepine and isoniazid has been reported to increase isoniazid-induced hepatotoxicity.

The combination of lithium and carbamazepine may cause enhanced neurotoxicity in spite of lithium plasma concentrations being within the therapeutic range. Combined use of carbamazepine with metoclopramide or major tranquillisers, e.g. haloperidol, thioridazine, may also result in an increase in neurological side-effects.

Concomitant medication with carbamazepine and some diuretics (hydrochlorothiazide, furosemide) may lead to symptomatic hyponatraemia.

Carbamazepine may antagonise the effects of non-depolarising muscle relaxants (e.g. pancuronium). Their dosage should be raised and patients monitored closely for a more rapid recovery from neuromuscular blockade than expected.

Carbamazepine, like other psychoactive drugs, may reduce alcohol tolerance. It is therefore advisable for the patient to abstain from alcohol.

Concomitant use of carbamazepine with direct acting oral anti-coagulants (rivaroxaban, dabigatran, apixaban and edoxaban) may lead to reduced plasma concentrations of direct acting oral anti-coagulants, which carries the risk of thrombosis. Therefore, if a concomitant use is necessary, closer monitoring of signs and symptoms of thrombosis is recommended.


4.6. Fertility, pregnancy and lactation

Women of childbearing potential/Contraception

Due to enzyme induction, carbamazepine may result in a failure of the therapeutic effect of oral contraceptive drugs containing oestrogen and/or progesterone. Women of child bearing potential should be advised to use alternative contraceptive methods while on treatment with carbamazepine and for 2 weeks following the last dose.

Pregnancy

Carbamazepine should only be used during pregnancy after a careful risk/benefit evaluation (if the potential benefit to the mother justifies the potential risk to the fetus).

Risk summary

Offspring of epileptic mothers with untreated epilepsy are known to be more prone to developmental disorders, including malformations. Developmental disorders and malformations, including spina bifida, and also other congenital anomalies e.g. craniofacial defects such as cleft lip/palate, cardiovascular malformations, hypospadias and anomalies involving various body systems, have been reported in association with the use of carbamazepine. Patients should be counselled regarding the possibility of an increased risk of malformations and given the opportunity of antenatal screening. Based on data in a North American pregnancy registry, the rate of major congenital malformations, defined as a structural abnormality with surgical, medical, or cosmetic importance, diagnosed within 12 weeks of birth was 3.0% (95% CI 2.1 to 4.2%) among mothers exposed to carbamazepine monotherapy in the first trimester and 1.1% (95% CI 0.35 to 2.5%) among pregnant women not taking any antiepileptic drug (relative risk 2.7, 95% CI 1.1 to 7.0).

Clinical considerations

Taking these data into consideration:

- Pregnant women with epilepsy should be treated with special care.

- If women receiving carbamazepine become pregnant or plan to become pregnant, or if the need of initiating treatment with carbamazepine arises during pregnancy, the drug's expected benefits must be carefully weighed against its possible hazards, particularly in the first 3 months of pregnancy.

- In women of childbearing potential carbamazepine should, wherever possible, be prescribed as monotherapy, because the incidence of congenital abnormalities in the offspring of women treated with a combination of antiepileptic drugs is greater than in those of mothers receiving the individual drugs as monotherapy. The risk of malformations following exposure to carbamazepine as polytherapy may vary depending on the specific drugs used and may be higher in polytherapy combinations that include valproate.

- Minimum effective doses should be given and monitoring of plasma levels is recommended. The plasma concentration could be maintained in the lower side of the therapeutic range 4 to 12 micrograms/mL provided seizure control is maintained. There is evidence to suggest that the risk of malformation with carbamazepine may be dose-dependent i.e. at a dose < 400mg per day, the rates of malformation were lower than with higher doses of carbamazepine.

- Patients should be counseled regarding the possibility of an increased risk of malformations and given the opportunity of antenatal screening.

- During pregnancy, an effective antiepileptic treatment should not be interrupted, since the aggravation of the illness is detrimental to both the mother and the fetus.

Monitoring and prevention

Folic acid deficiency is known to occur in pregnancy. Antiepileptic drugs have been reported to aggravate deficiency. This deficiency may contribute to the increased incidence of birth defects in the offspring of treated epileptic women. Folic acid supplementation has therefore been recommended before and during pregnancy.

In the neonate

In order to prevent bleeding disorders in the offspring, it has also been recommended that vitamin K1, be given to the mother during the last weeks of pregnancy as well as to the neonate.

There have been a few cases of neonatal seizures and/or respiratory depression associated with maternal carbamazepine and other concomitant antiepileptic drug use. A few cases of neonatal vomiting, diarrhoea and/or decreased feeding have also been reported in association with maternal carbamazepine use. These reactions may represent a neonatal withdrawal syndrome.

Animal studies have shown reproductive toxicity (see section 5.3).

Breast-feeding

Risk summary

Carbamazepine passes into the breast milk (about 25-60% of the plasma concentrations). The benefits of breast-feeding should be weighed against the risk of adverse effects in the infant. Mothers taking carbamazepine may breast-feed their infants, provided the infant is observed for possible adverse reactions (e.g. excessive somnolence, allergic skin reaction). There have been some reports of cholestatic hepatitis in neonates exposed to carbamazepine during antenatal and or during breast feeding. Therefore, breast-fed infants of mothers treated with carbamazepine should be carefully observed for adverse hepatobiliary effects.

Fertility

There have been very rare reports of impaired male fertility and/or abnormal spermatogenesis.


4.7. Effects on ability to drive and use machines

The patient's ability to react may be impaired by the medical condition resulting in seizures and adverse reactions including dizziness, drowsiness, ataxia, diplopia, impaired accommodation and blurred vision have been reported with carbamazepine, especially at the start of treatment or in connection with dose adjustments. Patients should therefore exercise due caution when driving a vehicle or operating machinery.


4.8. Undesirable effects

Summary of the safety profile

Particularly at the start of treatment with carbamazepine, or if the initial dosage is too high, or when treating elderly patients, certain types of adverse reaction occur very commonly or commonly, e.g. CNS adverse reactions (dizziness, headache, ataxia, drowsiness, fatigue, diplopia); gastrointestinal disturbances (nausea, vomiting), as well as allergic skin reactions.

The dose-related adverse reactions usually abate within a few days, either spontaneously or after a transient dosage reduction. The occurrence of CNS adverse reactions may be a manifestation of relative overdosage or significant fluctuation in plasma levels. In such cases it is advisable to monitor the plasma levels and divide the daily dosage into smaller (i.e. 3-4) fractional doses.

Tabulated summary of adverse drug reactions compiled from clinical trials and from

spontaneous reports

Adverse drug reactions from clinical trials are listed by MedDRA system organ class. Within each system organ class, the adverse drug reactions are ranked by frequency, with the most frequent reactions first. Within each frequency grouping, adverse drug reactions are presented in order of decreasing seriousness. In addition, the corresponding frequency category for each adverse drug reaction is based on the following convention (CIOMS III): very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000).

System organ class

Adverse drug reactions

Infections and infestations

Not known**

reactivation of Human herpesvirus 6 infection.

Blood and the lymphatic system disorders

Very common

leucopenia

Common

thrombocytopenia, eosinophilia.

Rare

leucocytosis, lymphadenopathy.

Very rare

agranulocytosis, aplastic anaemia, pancytopenia, aplasia pure red cell, anaemia, anaemia megaloblastic, reticulocytosis, haemolytic anaemia.

Not known

Bone marrow depression

Immune system disorders

Rare

a delayed multi-organ hypersensitivity disorder with fever, rashes, vasculitis, lymphadenopathy, pseudolymphoma, arthralgia, leucopenia, eosinophilia, hepato-splenomegaly, abnormal liver function tests and vanishing bile duct syndrome (destruction and disappearance of the intrahepatic bile ducts) occurring in various combinations. Other organs may also be affected (e.g. liver, lungs, kidneys, pancreas, myocardium, colon).

Very rare

anaphylactic reaction, oedema angioedema, hypogammaglobulinaemia.

Not known**

Drug Rash with Eosinophilia and Systemic Symptoms (DRESS).

Endocrine disorders

Common

Oedema, fluid retention, weight increase, hyponatraemia and blood osmolarity decreased due to an antidiuretic hormone (ADH)-like effect, leading in rare cases to water intoxication accompanied by lethargy, vomiting, headache, confusional state, neurological disorders.

Very rare

galactorrhoea, gynaecomastia,

Metabolism and nutrition disorders

Rare

folate deficiency, decreased appetite.

Very rare

porphyria acute (acute intermittent porphyria and variegate porphyria), porphyria non-acute (porphyria cutanea tarda).

Psychiatric disorders

Rare

hallucinations (visual or auditory), depression, aggression, agitation, restlessness, confusional state.

Very rare

Activation of psychosis

Nervous system disorders

Very common

ataxia, dizziness, somnolence.

Common

diplopia, headache.

Uncommon

abnormal involuntary movements (e.g. tremor, asterixis, dystonia, tics), nystagmus.

Rare

dyskinesia, eye movement disorder, speech disorders (e.g. dysarthria or slurred speech), choreoathetosis, neuropathy peripheral, paraesthesia, and paresis.

Very rare

neuroleptic malignant syndrome, aseptic meningitis with myoclonus and peripheral eosinophilia, dysgeusia.

Not known**

sedation, memory impairment

Eye disorders

Common

accommodation disorders (e.g. blurred vision)

Very rare

lenticular opacities, conjunctivitis.

Ear and labyrinth disorders

Very rare

hearing disorders, e.g. tinnitus, hyperacusis, hypoacusis, change in pitch perception.

Cardiac disorders

Rare

cardiac conduction disorders.

Very rare

arrhythmia, atrioventricular block with syncope, bradycardia, cardiac failure congestive, coronary artery disease aggravated.

Vascular disorders

Rare

Hypertension or hypotension, vasodilatation

Very rare

circulatory collapse, embolism (e.g. pulmonary embolism), thrombophlebitis.

Respiratory, thoracic and mediastinal disorders

Very rare

pulmonary hypersensitivity characterised e.g. by fever, dyspnoea, pneumonitis or pneumonia.

Gastrointestinal disorders

Very common

vomiting, nausea.

Common

dry mouth, with suppositories rectal irritation may occur.

Uncommon

diarrhoea, constipation.

Rare

abdominal pain.

Very rare

Pancreatitis, glossitis, stomatitis,.

Not known**

colitis

Hepatobiliary disorders

Rare

hepatitis of cholestatic, parenchymal (hepatocellular) or mixed type, vanishing bile duct syndrome, jaundice.

Very rare

hepatic failure, granulomatous liver disease.

Skin and subcutaneous tissue disorders

Very common

urticaria, which may be severe dermatitus allergic,.

Uncommon:

dermatitis exfoliative.

Rare

systemic lupus erythematosus, pruritus.

Very rare

Stevens-Johnson syndrome*, toxic epidermal necrolysis, photosensitivity reaction, erythema multiforme, erythema nodosum, pigmentation disorder, purpura, acne, hyperhydrosis, alopecia, hirsutism

Not known**

Acute Generalized Exanthematous Pustulosis (AGEP)**, lichenoid keratosis, onychomadesis.

Musculoskeletal, connective tissue and bone disorders

Rare

muscular weakness.

Very rare:

bone metabolism disorders (decrease in plasma calcium and blood 25-hydroxy-cholecalciferol) leading to osteomalacia/osteoporosis, arthralgia,myalgia, muscle spasms.

Not known**

fracture

Renal and urinary disorders

Very rare

tubulointerstitial nephritis, renal failure, renal impairment (e.g. albuminuria, haematuria, oliguria and blood urea/ azotaemia), urinary retention, urinary frequency,.

Reproductive system

Very rare

sexual disturbances/erecticle dysfunction spermatogenesis abnormal (with decreased sperm count and/or motility).

General disorders and administration site conditions

Very Common

fatigue

Investigations

Very common

gamma-glutamyltransferase increased (due to hepatic enzyme induction), usually not clinically relevant.

Common

blood alkaline phosphatase increased.

Uncommon

transaminases increased.

Very rare

intraocular pressure increased, blood cholesterol increased, high density lipoprotein increased, blood triglycerides increased. Thyroid function test abnormal: decreased L-Thyroxin (free thyroxine, thyroxine, tri-iodothyronine) and increased blood thyroid stimulating hormone, usually without clinical manifestations, blood prolactin increased,

Not known**

Bone density decreased

Injury, poisoning and procedural complications

Not known**

Fall (associated with carbamazepine treatment induced ataxia, dizziness, somnolence, hypotension, confusional state, sedation) (see section 4.4 warning and precautions)

* In some Asian countries also reported as rare. See also section 4.4 Special warnings and precautions for use.

**Additional adverse drug reactions from spontaneous reports (frequency not known) There have been reports of decreased bone mineral density, osteopenia, osteoporosis and fractures in patients on long-term therapy with carbamazepine. The mechanism by which carbamazepine affects bone metabolism has not been identified.

There is increasing evidence regarding the association of genetic markers and the occurrence of cutaneous ADRs such as SJS, TEN, DRESS, AGEP and maculopapular rash. In Japanese and European patients, these reactions have been reported to be associated with the use of carbamazepine and the presence of the HLA-A*3101 allele. Another marker, HLA-B*1502 has been shown to be strongly associated with SJS and TEN among individuals of Han Chinese, Thai and some other Asian ancestry (see sections 4.2 and 4.4 for further information).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via Yellow Card Scheme. Website: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.


4.9. Overdose

Signs and symptoms

The presenting signs and symptoms of overdosage involve the central nervous, cardiovascular, respiratory systems and the adverse drug reactions mentioned under section 4.8.

Central nervous system: CNS depression; disorientation, depressed level of consciousness, somnolence, agitation, hallucination, coma; blurred vision, slurred speech, dysarthria, nystagmus, ataxia, dyskinesia, initially hyperreflexia, later hyporeflexia; convulsions, psychomotor disturbances, myoclonus, hypothermia, mydriasis.

Respiratory system: Respiratory depression, pulmonary oedema.

Cardiovascular system: Tachycardia, hypotension and at times hypertension, conduction disturbance with widening of QRS complex; syncope in association with cardiac arrest.

Gastro-intestinal system: Vomiting, delayed gastric emptying, reduced bowel motility.

Musculoskeletal system: There have been some cases which reported rhabdomyolysis in association with carbamazepine toxicity.

Renal function: Retention of urine, oliguria or anuria; fluid retention, water intoxication due to ADH-like effect of carbamazepine.

Laboratory findings: Hyponatraemia, possibly metabolic acidosis, possibly hyperglycaemia, increased muscle creatine phosphokinase.

Management

There is no specific antidote.

Management should initially be guided by the patient's clinical condition; admission to hospital. Measurement of the plasma level to confirm carbamazepine poisoning and to ascertain the size of the overdose.

Evacuation of the stomach, gastric lavage, and administration of activated charcoal. Delay in evacuating the stomach may result in delayed absorption, leading to relapse during recovery from intoxication. Supportive medical care in an intensive care unit with cardiac monitoring and careful correction of electrolyte imbalance.

Special recommendations:

Charcoal haemoperfusion has been recommended. Hemodialysis is an effective treatment modality in the management of the carbamazepine overdose.

Relapse and aggravation of symptomatology on the 2nd and 3rd day after overdose, due to delayed absorption, should be anticipated.


5.1. Pharmacodynamic properties

Therapeutic class: Anti-epileptic, neurotropic and psychotropic agent; (ATC Code: N03AF01). Dibenzazepine derivative.

As an antiepileptic agent its spectrum of activity embraces: partial seizures (simple and complex) with and without secondary generalisation; generalised tonic-clonic seizures, as well as combinations of these types of seizures.

The mechanism of action of carbamazepine, the active substance of Curatil, has only been partially elucidated. Carbamazepine stabilises hyperexcited nerve membranes, inhibits repetitive neuronal discharges, and reduces synaptic propagation of excitatory impulses. It is conceivable that prevention of repetitive firing of sodium-dependent action potentials in depolarised neurons via use- and voltage-dependent blockade of sodium channels may be its main mechanism of action.

Whereas reduction of glutamate release and stabilisation of neuronal membranes may account for the antiepileptic effects, the depressant effect on dopamine and noradrenaline turnover could be responsible for the antimanic properties of carbamazepine.


5.2. Pharmacokinetic properties

Absorption

Carbamazepine is almost completely absorbed but the rate of absorption from the tablets is slow and may vary amongst the various formulations and between patients. Peak concentrations of active substance in the plasma are attained within 24 hours of administration of single dose of Curatil.

The prolonged release formulation shows about 15% lower bioavailability than standard preparations due mainly to the considerable reduction in peak plasma levels occasioned by prolonged release of the same dosage of carbamazepine. Plasma concentrations show less fluctuation but auto-induction of carbamazepine occurs as with standard carbamazepine preparations.

The bioavailability of carbamazepine in various oral formulations has been shown to lie between 85-100%.

Ingestion of food has no significant influence on the rate and extent of absorption, regardless of the dosage form of carbamazepine.

Steady-state plasma concentrations of carbamazepine are attained within about 1-2 weeks, depending individually upon auto-induction by carbamazepine and hetero-induction by other enzyme-inducing drugs, as well as on pre-treatment status, dosage and duration of treatment.

Different preparations of carbamazepine may vary in bioavailability; to avoid reduced effect or risk of breakthrough seizures or excessive side effects, it may be prudent to avoid changing the formulation.

Distribution

Carbamazepine is bound to serum proteins to the extent of 70-80%. The concentration of unchanged substance in cerebrospinal fluid and saliva reflects the non-protein bound portion in plasma (20-30%). Concentrations in breast milk were found to be equivalent to 25-60% of the corresponding plasma levels.

Carbamazepine crosses the placental barrier. Assuming complete absorption of carbamazepine, the apparent volume of distribution ranges from 0.8 to 1.9 L/kg.

Biotransformation

Carbamazepine is metabolised in the liver, where the epoxide pathway of biotransformation is the most important one, yielding the 10, 11-transdiol derivative and its glucuronide as the main metabolites.

Cytochrome P450 3A4 has been identified as the major isoform responsible for the formation of carbamazepine 10, 11-epoxide from carbamazepine. Human microsomal epoxide hydrolase has been identified as the enzyme responsible for the formation of the 10,11-transdiol derivative from carbamazepine-10,11 epoxide. 9-Hydroxy-methyl-10-carbamoyl acridan is a minor metabolite related to this pathway. After a single oral dose of carbamazepine about 30% appears in the urine as end-products of the epoxide pathway.

Other important biotransformation pathways for carbamazepine lead to various monohydroxylated compounds, as well as to the N-glucuronide of carbamazepine produced by UGT2B7.

Elimination

The elimination half-life of unchanged carbamazepine averages approx. 36 hours following a single oral dose, whereas after repeated administration it averages only 16-24 hours (auto-induction of the hepatic mono-oxygenase system), depending on the duration of the medication. In patients receiving concomitant treatment with other enzyme-inducing drugs (e.g. phenytoin, phenobarbitone), half-life values averaging 9-10 hours have been found.

The mean elimination half-life of the 10, 11-epoxide metabolite in the plasma is about 6 hours following single oral doses of the epoxide itself.

After administration of a single oral dose of 400mg carbamazepine, 72% is excreted in the urine and 28% in the faeces. In the urine, about 2% of the dose is recovered as unchanged drug and about 1% as the pharmacologically active 10, 11-epoxide metabolite.

Characteristics in patients

The steady-state plasma concentrations of carbamazepine considered as “therapeutic range” vary considerably inter-individually; for the majority of patients a range between 4-12μg/ml corresponding to 17-50μmol/l has been reported. Concentrations of carbamazepine 10, 11-epoxide (pharmacologically active metabolite): about 30% of carbamazepine levels.

Special populations

Paediatric populations

Owing to enhanced carbamazepine elimination, children may require higher doses of carbamazepine (in mg/kg) than adults to maintain therapeutic concentrations.

Elderly population (65 years or above)

There is no indication of altered pharmacokinetics of carbamazepine in elderly patients as compared with young adults.

Patients with hepatic or renal impairment

No data are available on the pharmacokinetics of carbamazepine in patients with impaired hepatic or renal function.


5.3. Preclinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of single and repeated dose toxicity, local tolerance, genotoxicity and carcinogenic potential.

Reproductive toxicity studies in animals were insufficient to rule out a teratogenic effect of carbamazepine in humans.

Carcinogenicity

In rats treated with carbamazepine for two years, there was an increased incidence of hepatocellular tumours in females and benign testicular tumours in males. However, there is no evidence to date that these observations are of any relevance to the therapeutic use of carbamazepine in humans.

Reproductive toxicity

Animal data

The cumulative evidence from various animal studies in mice, rats and rabbits indicates that carbamazepine has no or only minor teratogenic potential at doses relevant to man. However, the animal studies were insufficient to rule out a teratogenic effect of carbamazepine. In a reproduction study in rats, nursing offspring demonstrated a reduced weight gain at a maternal dosage level of 192 mg/kg/day.

Fertility

In chronic toxicity studies dose related testicular atrophy and aspermatogenesis occurred in rats receiving carbamazepine. The safety margin for this effect is not known.


6.1. List of excipients

Microcrystalline cellulose

Ammonio methacrylate copolymer

Lactose monohydrate

Maize starch

Sodium starch glycolate type A

Magnesium stearate

Talc

Triethyl citrate


6.2. Incompatibilities

Not applicable.


6.3. Shelf life

2 years


6.4. Special precautions for storage

This medicinal product does not require any special storage conditions.


6.5. Nature and contents of container

Blister (Alu-PVC/PE/PVDC) packs of 30, 50, 56, 100 and 200 tablets

Not all pack sizes may be marketed.


6.6. Special precautions for disposal and other handling

No special requirements for disposal.


7. Marketing authorisation holder

Tillomed Laboratories Ltd

220 Butterfield Great Marlings

Luton LU2 8DL

United Kingdom


8. Marketing authorisation number(s)

PL 11311/0645


9. Date of first authorisation/renewal of the authorisation

23/07/2020


10. Date of revision of the text

23/07/2020

4.1 Therapeutic indications

Epilepsy – generalised tonic-clonic and partial seizures. Curatil is indicated in newly diagnosed patients with epilepsy and in those patients who are uncontrolled or unable to tolerate their current anti-convulsant therapy.

Note: Carbamazepine is not usually effective in absences (petit mal) and myoclonic seizures.

The paroxysmal pain of trigeminal neuralgia.

For the prophylaxis of manic-depressive psychoses in patients unresponsive to lithium therapy.

4.2 Posology and method of administration

Before deciding to initiate treatment, patients of Han Chinese and Thai origin should whenever possible be screened for HLA-B*1502 as this allele strongly predicts the risk of severe carbamazepine-associated Stevens-Johnson syndrome (See information on genetic testings and cutaneous reactions in section 4.4).

Posology

Epilepsy:

The dose of carbamazepine should be adjusted to the needs of the individual patient to achieve adequate control of seizures. Determination of plasma levels may help in establishing the optimum dosage. In the treatment of epilepsy, the dose of carbamazepine usually requires total plasma-carbamazepine concentrations of about 4 to 12 micrograms/mL (17 to 50 micromoles/litre) (see warnings and precautions).

Adults: It is advised that with all formulations of carbamazepine, a gradually increasing dosage scheme is used and this should be adjusted to suit the needs of the individual patient.

Special population

Elderly population (65 years or above): Due to the potential for drug interactions, the dosage of carbamazepine should be selected with caution in elderly patients (65 years of above).

Children and adolescents: It is advised that with all formulations of carbamazepine, a gradually increasing dosage scheme is used and this should be adjusted to suit the needs of the individual patient.

Usual dosage 10-20mg/kg bodyweight daily in several divided doses.

Age

up to 5 years:

Curatil Prolonged Release Tablets are not recommended

5-10 years:

400-600mg daily

10-15 years:

600-1000mg

>15 years of age:

800 to 1200mg daily (same as adult dose)

Maximum recommended dose

Up to 6 years of age: 35mg/kg/day

6-15 years of age: 1000mg/day

>15 years of age: 1200mg/day (same as adult dose).

Wherever possible, Curatil should be used as the sole drug anti-epileptic agent but if used in polytherapy, the same incremental dosage pattern is advised.

When Curatil is added to existing antiepileptic therapy, this should be done gradually while maintaining or, if necessary, adapting the dosage of the other antiepileptic(s) (see 4.5 Interaction with other medicinal products and other forms of interaction).

Trigeminal neuralgia:

Slowly raise the initial dosage of 200-400mg daily until freedom from pain is achieved (normally at 200mg 3-4 times daily). In the majority of patients, a dosage of 200mg 3 or 4 times a day is sufficient to maintain a pain free state. In some instances, doses of 1600mg carbamazepine daily may be needed. However, once the pain is in remission, the dosage should be gradually reduced to the lowest possible maintenance level. Maximum recommended dose is 1200mg/day. When pain relief has been obtained, attempts should be made to gradually discontinue therapy, until another attack occurs.

Special population

Dosage in Trigeminal neuralgia

Due to drug interactions and different antiepileptic drug pharmacokinetics, the dosage of carbamazepine should be selected with caution in elderly patients.

In elderly patients, an initial dose of 100mg twice daily is recommended. The initial dosage of 100mg twice daily should be slowly raised daily until freedom from pain is achieved (normally at 200mg 3 to 4 times daily). The dosage should then be gradually reduced to the lowest possible maintenance level. Maximum recommended dose is 1200mg/day. When pain relief has been obtained, attempts should be made to gradually discontinue therapy, until another attack occurs.

For the prophylaxis of manic depressive psychosis in patients unresponsive to lithium therapy:

Initial starting dose of 400mg daily, in divided doses, increasing gradually until symptoms are controlled or a total of 1600mg given in divided doses is reached. The usual dosage range is 400-600mg daily, given in divided doses.

Special populations

Renal impairment / Hepatic impairment

No data are available on the pharmacokinetics of carbamazepine in patients with impaired hepatic or renal function.

Method of administration

Curatil is given orally, generally in the same total daily dose as conventional carbamazepine dosage forms but usually in two divided doses. In a few patients when changing from other oral dosage forms of carbamazepine to Curatil the total daily dose may need to be increased, particularly when it is used in polytherapy. When starting treatment with Curatil in monotherapy, 100-200mg once or twice daily is recommended. This may be followed by a slow increase in dosage until the best response is obtained, often 800-1200mg daily. In some instances, 1600mg or even 2000mg daily may be necessary.

The tablets should be taken during after or between a meal with a drink of water. The prolonged-release tablets should be swallowed whole and not chewed or crushed.

4.3 Contraindications

- Known hypersensitivity to carbamazepine or structurally related drugs (e.g. tricyclic antidepressants) or any other component of the formulation.

- Patients with atrioventricular block, a history of bone marrow depression or a history of hepatic porphyrias (e.g. acute intermittent porphyria, variegate porphyria, porphyria cutanea tarda).

- The use of carbamazepine is contraindicated in combination with monoamine oxidase inhibitors (MAOIs) (see section 4.5 Interaction with other medicinal products and other forms of interaction

4.4 Special warnings and precautions for use

Warnings

Agranulocytosis and aplastic anaemia have been associated with carbamazepine; however, due to the very low incidence of these conditions, meaningful risk estimates for carbamazepine are difficult to obtain. The overall risk in the general untreated population has been estimated at 4.7 persons per million per year for agranulocytosis and 2.0 persons per million per year for aplastic anaemia.

Decreased platelet or white blood cell counts occur occasionally to frequently in association with the use of carbamazepine. Nonetheless, complete pre-treatment blood counts, including platelets and possibly reticulocytes and serum iron, should be obtained as a baseline, and periodically thereafter.

Patients and their relatives should be made aware of early toxic signs and symptoms indicative of a potential haematological problem, as well as symptoms of dermatological or hepatic reactions. If reactions such as fever, sore throat, rash, ulcers in the mouth, easy bruising, petechial or purpuric haemorrhage appear, the patient should be advised to consult his physician immediately.

If the white blood cell or platelet count is definitely low or decreased during treatment, the patient and the complete blood count should be closely monitored (see Section 4.8 Undesirable Effects). However, treatment with carbamazepine should be discontinued if the patient develops leucopenia which is severe, progressive or accompanied by clinical manifestations, e.g. fever or sore throat. Carbamazepine should also be discontinued if any evidence of significant bone marrow depression appears.

Liver function tests should also be performed before commencing treatment and periodically thereafter, particularly in patients with a history of liver disease and in elderly patients. The drug should be withdrawn immediately in cases of aggravated liver dysfunction or acute liver disease.

Some liver function tests in patients receiving carbamazepine may be found to be abnormal, particularly gamma glutamyl transferase. This is probably due to hepatic enzyme induction. Enzyme induction may also produce modest elevations in alkaline phosphatase. These enhancements of hepatic metabolising capacity are not an indication for the withdrawal of carbamazepine.

Severe hepatic reactions to carbamazepine occur very rarely. The development of signs and symptoms of liver dysfunction or active liver disease should be urgently evaluated and treatment with carbamazepine suspended pending the outcome of the evaluation.

Suicidal ideation and behaviour have been reported in patients treated with anti-epileptic agents in several indications. A meta-analysis of randomised placebo controlled trials of antiepileptic drugs has also shown a small increased risk of suicidal ideation and behaviour. The mechanism of this risk is not known and the available data do not exclude the possibility of an increased risk for carbamazepine.

Therefore, patients should be monitored for signs of suicidal ideation and behaviours and appropriate treatment should be considered. Patients (and caregivers of patients) should be advised to seek medical advice should signs of suicidal ideation or behaviour emerge.

Serious dermatological reactions, including toxic epidermal necrolysis (TEN: also known as Lyell's syndrome) and Stevens Johnson syndrome (SJS) have been reported very rarely with carbamazepine. Patients with serious dermatological reactions may require hospitalization, as these conditions may be life-threatening and may be fatal. Most of the SJS/TEN cases appear in the first few months of treatment with carbamazepine. These reactions are estimated to occur in 1 to 6 per 10,000 new users in countries with mainly Caucasian populations. If signs and symptoms suggestive of severe skin reactions (e.g. SJS, Lyell's syndrome/TEN) appear, carbamazepine should be withdrawn at once and alternative therapy should be considered.

Cutaneous reactions

Serious and sometimes fatal cutaneous reactions including toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) have been reported during treatment with carbamazepine. These reactions are estimated to occur in 1-6 per 10 000 new users in countries with mainly Caucasian populations, but the risk in some Asian countries is estimated to be about 10 times higher.

There is growing evidence of the role of different HLA alleles in predisposing patients to immune-mediated adverse reactions (see section 4.2).

HLA-B*1502 allele - in Han Chinese, Thai and other Asian populations

HLA-B*1502 in individuals of Han Chinese and Thai origin has been shown to be strongly associated with the risk of developing Stevens-Johnson syndrome (SJS) when treated with carbamazepine. The prevalence of HLA-B*1502 carrier is about 10% in Han Chinese and Thai populations. Whenever possible, these individuals should be screened for this allele before starting treatment with carbamazepine (see section 4.2). If these individuals test positive, carbamazepine should not be started unless there is no other therapeutic option. Tested patients who are found to be negative for HLA-B*1502 have a low risk of SJS, although the reactions may still very rarely occur.

There are some data that suggest an increased risk of serious carbamazepine-associated TEN/SJS in other Asian populations. Because of the prevalence of this allele in other Asian populations (e.g. above 15% in the Philippines and Malaysia), testing genetically at risk populations for the presence of HLA-B*1502 may be considered.

The prevalence of the HLA-B*1502 allele is negligible in e.g. European descent, African,Hispanic populations sampled, and in Japanese and Koreans (< 1%).

HLA-A*3101 allele - European descent and Japanese populations

There are some data that suggest HLA-A*3101 is associated with an increased risk of carbamazepine induced cutaneous adverse drug reactions including SJS, TEN, Drug rash with eosinophilia (DRESS), or less severe acute generalized exanthematous pustulosis (AGEP) and maculopapular rash (see section 4.8) in people of European descent and the Japanese.

The frequency of the HLA-A*3101 allele varies widely between ethnic populations. HLA-A* 3101 allele has a prevalence of 2 to 5% in European populations and about 10% in Japanese population.

The presence of HLA-A*3101 allele may increase the risk for carbamazepine induced cutaneous reactions (mostly less severe) from 5.0% in general population to 26.0% among subjects of Northern European ancestry, whereas its absence may reduce the risk from 5.0% to 3.8%.

There are insufficient data supporting a recommendation for HLA-A*3101 screening before starting carbamazepine treatment.

If patients of European descent or Japanese origin are known to be positive for HLA-A*3101 allele, the use of carbamazepine may be considered if the benefits are thought to exceed risks.

Other dermatologic reactions

Mild skin reactions e.g. isolated macular or maculopapular exanthema, can also occur and are mostly transient and not hazardous. They usually disappear within a few days or weeks, either during the continued course of treatment or following a decrease in dosage. However, since it may be difficult to differentiate the early signs of more serious skin reactions from mild transient reactions, the patient should be kept under close surveillance with consideration given to immediately withdrawing the drug should the reaction worsen with continued use.

The HLA-B*1502 allele has not been found to predict risk of less severe adverse cutaneous reactions from carbamazepine, such as anticonvulsant hypersensitivity syndrome or nonserious rash (maculopapular eruption).

Hypersensitivity

Carbamazepine may trigger hypersensitivity reactions, including Drug Rash with Eosinophilia and Systemic Symptoms (DRESS), reactivation of HHV6 associated with DRESS, a delayed multi-organ hypersensitivity disorder with fever, rash, vasculitis, lymphadenopathy, pseudo lymphoma, arthralgia, leukopenia, eosinophilia, hepato-splenomegaly, abnormal liver function tests and vanishing bile duct syndrome (destruction and disappearance of the intrahepatic bile ducts), that may occur in various combinations. Other organs may also be affected (e.g. lungs, kidneys, pancreas, myocardium, colon) see section 4.8 Undesirable Effects.

In general, if signs and symptoms suggestive of hypersensitivity reactions occur, carbamazepine should be withdrawn immediately.

Patients who have exhibited hypersensitivity reactions to carbamazepine should be informed that 25-30 % of these patients may experience hypersensitivity reactions with oxacarbazepine.

Cross-hypersensitivity can occur between carbamazepine and aromatic antiepileptic drugs (e.g phenytoin, primidone and phenobarbital).

Carbamazepine should be used with caution in patients with mixed seizures which include absences, either typical or atypical. In all these conditions, carbamazepine may exacerbate seizures. In case of exacerbation of seizures, carbamazepine should be discontinued. Moreover, anecdotal evidence suggests that seizure exacerbation may occur in patients with atypical absences.

An increase in seizure frequency may occur during switchover from an oral formulation to suppositories.

Dose reduction and withdrawal effects

Abrupt withdrawal of carbamazepine may precipitate seizures therefore carbamazepine withdrawal should be gradual. If treatment with carbamazepine has to be withdrawn abruptly in a patient with epilepsy, the changeover to another anti-epileptic drug should if necessary be effected under the cover of a suitable drug.

Endocrinological effects

Breakthrough bleeding has been reported in women taking carbamazepine while using hormonal contraceptives. The reliability of hormonal contraceptives may be adversely affected by carbamazepine and women of childbearing potential should be advised to consider using alternative forms of birth control while taking carbamazepine.

Patients taking carbamazepine and requiring hormonal contraception should receive a preparation containing not less than 50μg oestrogen or use of some alternative non-hormonal method of contraception should be considered.

Monitoring of plasma levels

Although correlations between dosages and plasma levels of carbamazepine, and between plasma levels and clinical efficacy or tolerability are rather tenuous, monitoring of the plasma levels may be useful in the following conditions: dramatic increase in seizure frequency/verification of patient compliance; during pregnancy; when treating children or adolescents; in suspected absorption disorders; in suspected toxicity when more than one drug is being used (see 4.5 Interaction with other Medicaments and other forms of Interaction).

Precautions

Carbamazepine should be prescribed only after a critical benefit-risk appraisal and under close monitoring in patients with a history of cardiac, hepatic or renal damage, adverse haematological reactions to other drugs, or interrupted courses of therapy with carbamazepine.

Baseline and periodic complete urinalysis and BUN determinations are recommended.

Hyponatremia

Hyponatremia is known to occur with carbamazepine. In patients with pre-existing renal conditions associated with low sodium or in patients treated concomitantly with sodium-lowering medicinal products (e.g. diuretics, medicinal products associated with inappropriate ADH secretion), serum sodium levels should be measured prior to initiating carbamazepine therapy. Thereafter, serum sodium levels should be measured after approximately two weeks and then at monthly intervals for the first three months during therapy, or according to clinical need. These risk factors may apply especially to elderly patients. If hyponatraemia is observed, water restriction is an important counter-measurement if clinically indicated.

Hypothyroidism

Carbamazepine may reduce serum concentrations of thyroid hormones through enzyme induction requiring an increase in dose of thyroid replacement therapy in patients with hypothyroidism. Hence thyroid function monitoring is suggested to adjust the dosage of thyroid replacement therapy.

Anticholinergic effects

Carbamazepine has shown mild anticholinergic activity; patients with increased intraocular pressure and urinary retention should therefore be closely observed during therapy (see section 4.8).

Psychiatric effects

The possibility of activation of a latent psychosis and, in elderly patients, of confusion or agitation should be borne in mind.

Interactions

Co-administration of inhibitors of CYP3A4 or inhibitors of epoxide hydrolase with carbamazepine can induce adverse reactions (increase of carbamazepine or carbamazepine-10,11 epoxide plasma concentrations respectively). The dosage of carbamazepine should be adjusted accordingly and/or the plasma levels monitored.

Co-administration of CYP3A4 inducers with carbamazepine may decrease carbamazepine plasma concentrations and its therapeutic effect, while discontinuation of a CYP3A4 inducer may increase carbamazepine plasma concentrations. The dosage of carbamazepine may have to be adjusted.

Carbamazepine is a potent inducer of CYP3A4 and other phase I and phase II enzyme systems in the liver, and may therefore reduce plasma concentrations of co-medications mainly metabolized by CYP3A4 by induction of their metabolism. See section 4.5 Interactions.

Female patients of childbearing potential should be warned that the concurrent use of carbamazepine with hormonal contraceptives may render this type of contraceptive ineffective (see sections 4.5 Interactions and 4.6 Pregnancy and lactation). Alternative non-hormonal forms of contraception are recommended when using carbamazepine.

Falls

Carbamazepine treatment has been associated with ataxia, dizziness, somnolence, hypotension, confusional state, sedation (see section 4.8 Undesirable effects) which may lead to falls and, consequently fractures or other injuries. For patients with diseases, conditions, or medications that could exacerbate these effects, complete risk assessment of fall should be considered recurrently for patients on long-term Tegretol treatment.

Interference with serological testing

Carbamazepine may result in false positive perphenazine concentrations in HPLC analysis due to interference.

Carbamazepine and the 10,11-epoxide metabolite may result in false positive tricyclic antidepressant concentration in fluorescence polarized immunoassay method.

Lactose

This medicinal product contains lactose. Patients with rare hereditary problems of galactose intolerance, LAPP lactase deficiency or glucose-galactose malabsorption should not take this medicine

4.5 Interaction with other medicinal products and other forms of interaction

Carbamazepine interacts with many other medicinal products, and caution should always be taken when combining carbamazepine with other medicinal products.

Pharmacokinetic interactions

Cytochrome P450 3A4 (CYP 3A4) is the main enzyme catalysing formation of the active metabolite carbamazepine 10, 11-epoxide. Co-administration of inhibitors of CYP 3A4 may result in increased carbamazepine plasma concentrations which could induce adverse reactions. Co-administration of CYP 3A4 inducers might increase the rate of carbamazepine metabolism, thus leading to potential decreases in the carbamazepine serum level and therapeutic effect.

Similarly, discontinuation of a CYP3A4 inducer may decrease the rate of metabolism of carbamazepine, leading to an increase in carbamazepine plasma levels.

Carbamazepine is a potent inducer of CYP3A4 and other phase I and phase II enzyme systems in the liver, and may therefore reduce plasma concentrations of co-medications mainly metabolized by CYP3A4 by induction of their metabolism.

Human microsomal epoxide hydrolase has been identified as the enzyme responsible for the formation of the 10,11-transdiol derivative from carbamazepine-10,11 epoxide. Coadministration of inhibitors of human microsomal epoxide hydrolase may result in increased carbamazepine-10,11 epoxide plasma concentrations.

Carbamazepine induces many active substance metabolizing enzymes and transporters, e.g. CYP3A, CYP2C8, 9 and 19, CYP2B6, UGTs (glucuronidation) and the transport protein p-glycoprotein (Pgp). Therefore, concomitant treatment with carbamazepine may increase the elimination of a large number of active substances whose metabolism is catalyzed by these enzymes. The plasma levels of such active substances can therefore be reduced with reduced or no effect as a result. Induction of Pgp can lead to lowered plasma levels and reduced distribution of drugs transported by this protein e.g. digoxin, fexofenadine, dabigatran, etexilate and sofosbuvir. The inducing effect of carbamazepine reaches its maximum after about 2 weeks of treatment with carbamazepine and may persist for at least 2 weeks after finishing treatment.

Interactions resulting in a contraindication

The use of carbamazepine is contraindicated in combination with monoamine-oxidase inhibitors (MAOIs); before administering carbamazepine MAOIs should be discontinued for a minimum of 2 weeks, or longer if the clinical situation permits (see contraindications).

Agents that may raise carbamazepine plasma levels:

Since raised plasma carbamazepine levels may result in adverse reactions (e.g. dizziness, drowsiness, ataxia, diplopia), the dosage of carbamazepine should be adjusted accordingly and/or the plasma levels monitored when used concomitantly with the substances described below:

Analgesics, anti-inflammatory drugs: dextropropoxyphene.

Androgens: danazol.

Antibiotics: macrolide antibiotics (e.g. erythromycin, clarithromycin), ciprofloxacine.

Antidepressants: fluoxetine, fluvoxamine, paroxetine, trazodone.

Antiepileptics: vigabatrin.

Antifungals: azoles (e.g. itraconazole, ketoconazole, fluconazole, voriconazole). Alternative anti-convulsants may be recommended in patients treated with voriconazole or itraconazole.

Antihistamines: loratadine.

Antipsychotics: olanzapine.

Antituberculosis: isoniazid.

Antivirals: protease inhibitors for HIV treatment (e.g. ritonavir).

Carbonic anhydrase inhibitors: acetazolamide.

Cardiovascular drugs: diltiazem, verapamil.

Gastrointestinal drugs: possibly cimetidine, omeprazole.

Other interactions: grapefruit juice, nicotinamide (only in high dosage).

Agents that may raise the active metabolite carbamazepine-10,11-epoxide plasma levels:

Since raised plasma carbamazepine-10,11-epoxide levels may result in adverse reactions (e.g. dizziness, drowsiness, ataxia, diplopia), the dosage of carbamazepine should be adjusted accordingly and/or the plasma levels monitored when used concomitantly with the substances described below:

Quetiapine, primidone, progabide, valproic acid, valnoctamide and valpromide.

Agents that may decrease carbamazepine plasma levels:

The dose of carbamazepine may have to be adjusted when used concomitantly with the substances described below:

Antiepileptics: oxcarbazepine, phenobarbital, phenytoin (to avoid phenytoin intoxication and subtherapeutic concentrations of carbamazepine it is recommended to adjust the plasma concentration of phenytoin to 13 micrograms /mL before adding carbamazepine to the treatment) and fosphenytoin, primidone, and, although the data are partly contradictory,possibly also clonazepam.

Antineoplastics: cisplatin or doxorubicin.

Antituberculosis: rifampicin.

Bronchodilatators or anti-asthma drugs: theophylline, aminophylline.

Dermatological drugs: isotretinoin.

Other interactions: herbal preparations containing St John's wort (Hypericum perforatum).

Due to potential interactions during combination therapy of epilepsy, plasma levels should be regularly monitored, and dosage adjusted accordingly as required. Blood assays of their respective plasma levels may vary from one patient to another, and moreover are usually bidirectional.

Serum levels of carbamazepine can be reduced by concomitant use of the herbal preparation St John's wort (Hypericum perforatum). This is due to induction of drug metabolising enzymes, which may persist for at least 2 weeks after cessation of treatment with St. John's wort. For patients taking St John's wort, serum levels of carbamazepine should be monitored and St. John's wort stopped. Carbamazepine levels may increase on stopping St. John's wort. The dose of carbamazepine may need adjusting.

Effect of Carbamazepine on plasma levels of concomitant agents:

Carbamazepine may lower the plasma level, diminish or even abolish the activity of certain medicinal products, due to its inducing effect on metabolising enzymes and the transport porotein P-gp. The dosage of the following drugs may have to be adjusted to clinical requirement:

Analgesics, anti-inflammatory agents: buprenorphine, methadone, paracetamol (long term administration of carbamazepine and paracetamol (acetaminophen) may be associated with hepatotoxicity), tramadol.

Antibiotics: doxycycline, rifabutin.

Anticoagulants: oral anticoagulants (e.g. warfarin, acenocoumarol, rivaroxaban, dabigatran, apixaban and edoxaban).

Antidepressants: bupropion, citalopram, mianserin, sertraline, trazodone, tricyclic antidepressants (e.g. imipramine, amitriptyline, nortriptyline, clomipramine).

Antiemetics: aprepitant

Antiepileptics: clobazam, clonazepam, ethosuximide, lamotrigine, eslicarbazepine, oxcarbazepine, primidone, tiagabine, topiramate, valproic acid, zonisamide. To avoid phenytoin intoxication and subtherapeutic concentrations of carbamazepine it is recommended to adjust the plasma treatment. There have been rare reports of an increase in plasma mephenytoin levels.

Antifungals: itraconazole, voriconazole. Alternative anti-convulsants may be recommended in patients treated with voriconazole or itraconazole.

Antihelmintics: albendazole.

Antineoplastics: imatinib, cyclophosphamide, lapatinib, temsirolimus.

Antipsychotics: clozapine, haloperidol and bromperidol, olanzapine, quetiapine, risperidone, aripiprazole, paliperidone.

Antivirals: protease inhibitors for HIV treatment (e.g. indinavir, ritonavir, saquinavir).

Anxiolytics: alprazolam.

Bronchodilatators or anti-asthma drugs: theophylline.

Contraceptives: hormonal contraceptives (alternative contraceptive methods should be considered).

Cardiovascular medinical products: calcium channel blockers (dihydropyridine group) e.g. felodipine, digoxin, simvastatin, atorvastatin, lovastatin, cerivastatin, ivabradine.

Corticosteroids: corticosteroids (e.g. prednisolone, dexamethasone).

Drugs used in erectile dysfunction: tadalafil.

Immunosuppressants: ciclosporin, everolimus, tacrolimus, sirolimus.

Thyroid agents: levothyroxine.

Other drug interactions: products containing oestrogens and/or progesterones.

Combinations that require specific consideration:

Concomitant use of carbamazepine and levetiracetam has been reported to increase carbamazepine-induced toxicity.

Concomitant use of carbamazepine and isoniazid has been reported to increase isoniazid-induced hepatotoxicity.

The combination of lithium and carbamazepine may cause enhanced neurotoxicity in spite of lithium plasma concentrations being within the therapeutic range. Combined use of carbamazepine with metoclopramide or major tranquillisers, e.g. haloperidol, thioridazine, may also result in an increase in neurological side-effects.

Concomitant medication with carbamazepine and some diuretics (hydrochlorothiazide, furosemide) may lead to symptomatic hyponatraemia.

Carbamazepine may antagonise the effects of non-depolarising muscle relaxants (e.g. pancuronium). Their dosage should be raised and patients monitored closely for a more rapid recovery from neuromuscular blockade than expected.

Carbamazepine, like other psychoactive drugs, may reduce alcohol tolerance. It is therefore advisable for the patient to abstain from alcohol.

Concomitant use of carbamazepine with direct acting oral anti-coagulants (rivaroxaban, dabigatran, apixaban and edoxaban) may lead to reduced plasma concentrations of direct acting oral anti-coagulants, which carries the risk of thrombosis. Therefore, if a concomitant use is necessary, closer monitoring of signs and symptoms of thrombosis is recommended.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/Contraception

Due to enzyme induction, carbamazepine may result in a failure of the therapeutic effect of oral contraceptive drugs containing oestrogen and/or progesterone. Women of child bearing potential should be advised to use alternative contraceptive methods while on treatment with carbamazepine and for 2 weeks following the last dose.

Pregnancy

Carbamazepine should only be used during pregnancy after a careful risk/benefit evaluation (if the potential benefit to the mother justifies the potential risk to the fetus).

Risk summary

Offspring of epileptic mothers with untreated epilepsy are known to be more prone to developmental disorders, including malformations. Developmental disorders and malformations, including spina bifida, and also other congenital anomalies e.g. craniofacial defects such as cleft lip/palate, cardiovascular malformations, hypospadias and anomalies involving various body systems, have been reported in association with the use of carbamazepine. Patients should be counselled regarding the possibility of an increased risk of malformations and given the opportunity of antenatal screening. Based on data in a North American pregnancy registry, the rate of major congenital malformations, defined as a structural abnormality with surgical, medical, or cosmetic importance, diagnosed within 12 weeks of birth was 3.0% (95% CI 2.1 to 4.2%) among mothers exposed to carbamazepine monotherapy in the first trimester and 1.1% (95% CI 0.35 to 2.5%) among pregnant women not taking any antiepileptic drug (relative risk 2.7, 95% CI 1.1 to 7.0).

Clinical considerations

Taking these data into consideration:

- Pregnant women with epilepsy should be treated with special care.

- If women receiving carbamazepine become pregnant or plan to become pregnant, or if the need of initiating treatment with carbamazepine arises during pregnancy, the drug's expected benefits must be carefully weighed against its possible hazards, particularly in the first 3 months of pregnancy.

- In women of childbearing potential carbamazepine should, wherever possible, be prescribed as monotherapy, because the incidence of congenital abnormalities in the offspring of women treated with a combination of antiepileptic drugs is greater than in those of mothers receiving the individual drugs as monotherapy. The risk of malformations following exposure to carbamazepine as polytherapy may vary depending on the specific drugs used and may be higher in polytherapy combinations that include valproate.

- Minimum effective doses should be given and monitoring of plasma levels is recommended. The plasma concentration could be maintained in the lower side of the therapeutic range 4 to 12 micrograms/mL provided seizure control is maintained. There is evidence to suggest that the risk of malformation with carbamazepine may be dose-dependent i.e. at a dose < 400mg per day, the rates of malformation were lower than with higher doses of carbamazepine.

- Patients should be counseled regarding the possibility of an increased risk of malformations and given the opportunity of antenatal screening.

- During pregnancy, an effective antiepileptic treatment should not be interrupted, since the aggravation of the illness is detrimental to both the mother and the fetus.

Monitoring and prevention

Folic acid deficiency is known to occur in pregnancy. Antiepileptic drugs have been reported to aggravate deficiency. This deficiency may contribute to the increased incidence of birth defects in the offspring of treated epileptic women. Folic acid supplementation has therefore been recommended before and during pregnancy.

In the neonate

In order to prevent bleeding disorders in the offspring, it has also been recommended that vitamin K1, be given to the mother during the last weeks of pregnancy as well as to the neonate.

There have been a few cases of neonatal seizures and/or respiratory depression associated with maternal carbamazepine and other concomitant antiepileptic drug use. A few cases of neonatal vomiting, diarrhoea and/or decreased feeding have also been reported in association with maternal carbamazepine use. These reactions may represent a neonatal withdrawal syndrome.

Animal studies have shown reproductive toxicity (see section 5.3).

Breast-feeding

Risk summary

Carbamazepine passes into the breast milk (about 25-60% of the plasma concentrations). The benefits of breast-feeding should be weighed against the risk of adverse effects in the infant. Mothers taking carbamazepine may breast-feed their infants, provided the infant is observed for possible adverse reactions (e.g. excessive somnolence, allergic skin reaction). There have been some reports of cholestatic hepatitis in neonates exposed to carbamazepine during antenatal and or during breast feeding. Therefore, breast-fed infants of mothers treated with carbamazepine should be carefully observed for adverse hepatobiliary effects.

Fertility

There have been very rare reports of impaired male fertility and/or abnormal spermatogenesis.

4.7 Effects on ability to drive and use machines

The patient's ability to react may be impaired by the medical condition resulting in seizures and adverse reactions including dizziness, drowsiness, ataxia, diplopia, impaired accommodation and blurred vision have been reported with carbamazepine, especially at the start of treatment or in connection with dose adjustments. Patients should therefore exercise due caution when driving a vehicle or operating machinery.

4.8 Undesirable effects

Summary of the safety profile

Particularly at the start of treatment with carbamazepine, or if the initial dosage is too high, or when treating elderly patients, certain types of adverse reaction occur very commonly or commonly, e.g. CNS adverse reactions (dizziness, headache, ataxia, drowsiness, fatigue, diplopia); gastrointestinal disturbances (nausea, vomiting), as well as allergic skin reactions.

The dose-related adverse reactions usually abate within a few days, either spontaneously or after a transient dosage reduction. The occurrence of CNS adverse reactions may be a manifestation of relative overdosage or significant fluctuation in plasma levels. In such cases it is advisable to monitor the plasma levels and divide the daily dosage into smaller (i.e. 3-4) fractional doses.

Tabulated summary of adverse drug reactions compiled from clinical trials and from

spontaneous reports

Adverse drug reactions from clinical trials are listed by MedDRA system organ class. Within each system organ class, the adverse drug reactions are ranked by frequency, with the most frequent reactions first. Within each frequency grouping, adverse drug reactions are presented in order of decreasing seriousness. In addition, the corresponding frequency category for each adverse drug reaction is based on the following convention (CIOMS III): very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000).

System organ class

Adverse drug reactions

Infections and infestations

Not known**

reactivation of Human herpesvirus 6 infection.

Blood and the lymphatic system disorders

Very common

leucopenia

Common

thrombocytopenia, eosinophilia.

Rare

leucocytosis, lymphadenopathy.

Very rare

agranulocytosis, aplastic anaemia, pancytopenia, aplasia pure red cell, anaemia, anaemia megaloblastic, reticulocytosis, haemolytic anaemia.

Not known

Bone marrow depression

Immune system disorders

Rare

a delayed multi-organ hypersensitivity disorder with fever, rashes, vasculitis, lymphadenopathy, pseudolymphoma, arthralgia, leucopenia, eosinophilia, hepato-splenomegaly, abnormal liver function tests and vanishing bile duct syndrome (destruction and disappearance of the intrahepatic bile ducts) occurring in various combinations. Other organs may also be affected (e.g. liver, lungs, kidneys, pancreas, myocardium, colon).

Very rare

anaphylactic reaction, oedema angioedema, hypogammaglobulinaemia.

Not known**

Drug Rash with Eosinophilia and Systemic Symptoms (DRESS).

Endocrine disorders

Common

Oedema, fluid retention, weight increase, hyponatraemia and blood osmolarity decreased due to an antidiuretic hormone (ADH)-like effect, leading in rare cases to water intoxication accompanied by lethargy, vomiting, headache, confusional state, neurological disorders.

Very rare

galactorrhoea, gynaecomastia,

Metabolism and nutrition disorders

Rare

folate deficiency, decreased appetite.

Very rare

porphyria acute (acute intermittent porphyria and variegate porphyria), porphyria non-acute (porphyria cutanea tarda).

Psychiatric disorders

Rare

hallucinations (visual or auditory), depression, aggression, agitation, restlessness, confusional state.

Very rare

Activation of psychosis

Nervous system disorders

Very common

ataxia, dizziness, somnolence.

Common

diplopia, headache.

Uncommon

abnormal involuntary movements (e.g. tremor, asterixis, dystonia, tics), nystagmus.

Rare

dyskinesia, eye movement disorder, speech disorders (e.g. dysarthria or slurred speech), choreoathetosis, neuropathy peripheral, paraesthesia, and paresis.

Very rare

neuroleptic malignant syndrome, aseptic meningitis with myoclonus and peripheral eosinophilia, dysgeusia.

Not known**

sedation, memory impairment

Eye disorders

Common

accommodation disorders (e.g. blurred vision)

Very rare

lenticular opacities, conjunctivitis.

Ear and labyrinth disorders

Very rare

hearing disorders, e.g. tinnitus, hyperacusis, hypoacusis, change in pitch perception.

Cardiac disorders

Rare

cardiac conduction disorders.

Very rare

arrhythmia, atrioventricular block with syncope, bradycardia, cardiac failure congestive, coronary artery disease aggravated.

Vascular disorders

Rare

Hypertension or hypotension, vasodilatation

Very rare

circulatory collapse, embolism (e.g. pulmonary embolism), thrombophlebitis.

Respiratory, thoracic and mediastinal disorders

Very rare

pulmonary hypersensitivity characterised e.g. by fever, dyspnoea, pneumonitis or pneumonia.

Gastrointestinal disorders

Very common

vomiting, nausea.

Common

dry mouth, with suppositories rectal irritation may occur.

Uncommon

diarrhoea, constipation.

Rare

abdominal pain.

Very rare

Pancreatitis, glossitis, stomatitis,.

Not known**

colitis

Hepatobiliary disorders

Rare

hepatitis of cholestatic, parenchymal (hepatocellular) or mixed type, vanishing bile duct syndrome, jaundice.

Very rare

hepatic failure, granulomatous liver disease.

Skin and subcutaneous tissue disorders

Very common

urticaria, which may be severe dermatitus allergic,.

Uncommon:

dermatitis exfoliative.

Rare

systemic lupus erythematosus, pruritus.

Very rare

Stevens-Johnson syndrome*, toxic epidermal necrolysis, photosensitivity reaction, erythema multiforme, erythema nodosum, pigmentation disorder, purpura, acne, hyperhydrosis, alopecia, hirsutism

Not known**

Acute Generalized Exanthematous Pustulosis (AGEP)**, lichenoid keratosis, onychomadesis.

Musculoskeletal, connective tissue and bone disorders

Rare

muscular weakness.

Very rare:

bone metabolism disorders (decrease in plasma calcium and blood 25-hydroxy-cholecalciferol) leading to osteomalacia/osteoporosis, arthralgia,myalgia, muscle spasms.

Not known**

fracture

Renal and urinary disorders

Very rare

tubulointerstitial nephritis, renal failure, renal impairment (e.g. albuminuria, haematuria, oliguria and blood urea/ azotaemia), urinary retention, urinary frequency,.

Reproductive system

Very rare

sexual disturbances/erecticle dysfunction spermatogenesis abnormal (with decreased sperm count and/or motility).

General disorders and administration site conditions

Very Common

fatigue

Investigations

Very common

gamma-glutamyltransferase increased (due to hepatic enzyme induction), usually not clinically relevant.

Common

blood alkaline phosphatase increased.

Uncommon

transaminases increased.

Very rare

intraocular pressure increased, blood cholesterol increased, high density lipoprotein increased, blood triglycerides increased. Thyroid function test abnormal: decreased L-Thyroxin (free thyroxine, thyroxine, tri-iodothyronine) and increased blood thyroid stimulating hormone, usually without clinical manifestations, blood prolactin increased,

Not known**

Bone density decreased

Injury, poisoning and procedural complications

Not known**

Fall (associated with carbamazepine treatment induced ataxia, dizziness, somnolence, hypotension, confusional state, sedation) (see section 4.4 warning and precautions)

* In some Asian countries also reported as rare. See also section 4.4 Special warnings and precautions for use.

**Additional adverse drug reactions from spontaneous reports (frequency not known) There have been reports of decreased bone mineral density, osteopenia, osteoporosis and fractures in patients on long-term therapy with carbamazepine. The mechanism by which carbamazepine affects bone metabolism has not been identified.

There is increasing evidence regarding the association of genetic markers and the occurrence of cutaneous ADRs such as SJS, TEN, DRESS, AGEP and maculopapular rash. In Japanese and European patients, these reactions have been reported to be associated with the use of carbamazepine and the presence of the HLA-A*3101 allele. Another marker, HLA-B*1502 has been shown to be strongly associated with SJS and TEN among individuals of Han Chinese, Thai and some other Asian ancestry (see sections 4.2 and 4.4 for further information).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via Yellow Card Scheme. Website: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

Learning Zones

The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.

 

 

Disclaimer

The drug SPC information (indications, contra-indications, interactions, etc), has been developed in collaboration with eMC (www.medicines.org.uk/emc/). Medthority offers the whole library of SPC documents from eMC.

Medthority will not be held liable for explicit or implicit errors, or missing data.

Reporting of suspected adverse reactions 

Drug Licencing

Drugs appearing in this section are approved by UK Medicines & Healthcare Products Regulatory Agency (MHRA), & the European Medicines Agency (EMA).