This site is intended for healthcare professionals
  • Home
  • /
  • Journals
  • /
  • Uncategorised Disease
  • /
  • Cardiac differentiation of embryonic stem cells by...
Journal

Cardiac differentiation of embryonic stem cells by substrate immobilization of insulin-like growth factor binding protein 4 with elastin-like polypeptides

Read time: 1 mins
Published:25th Mar 2020
Source: Biomaterials
The establishment of cardiomyocyte differentiation of embryonic stem cells (ESCs) is a useful strategy for cardiovascular regenerative medicine. Here, we report a strategy for cardiomyocyte differentiation of ESCs using substrate immobilization of insulin-like growth factor binding protein 4 (IGFBP4) with elastin-like polypeptides. Recently, IGFBP4 was reported to promote cardiomyocyte differentiation of ESCs through inhibition of the Wnt/beta-catenin signaling. However, high amounts of IGFBP4 (approximately 1mug/mL) were required to inhibit the Wnt/beta-catenin signaling and induce differentiation to cardiomyocytes. We report herein induction of cardiomyocyte differentiation using IGFBP4-immobilized substrates. IGFBP4-immobilized substrates were created by fusion with elastin-like polypeptides. IGFBP4 was stably immobilized to polystyrene dishes through fusion of elastin-like polypeptides. Cardiomyocyte differentiation of ESCs was effectively promoted by strong and continuous inhibition of Wnt/beta-catenin signaling with IGFBP4-immobilized substrates. These results demonstrated that IGFBP4 could be immobilized using fusion of elastin-like polypeptides. Our results also demonstrate that substrate immobilization of IGFBP4 is a powerful tool for differentiation of ESCs into cardiomyocytes. These findings suggest that substrate immobilization of soluble factors is a useful technique for differentiation of ESCs in regenerative medicine and tissue engineering.

Read abstract on library site